ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¨n¡ÊN*£©£¬¹ØÓÚÊýÁÐ{an}ÓÐÏÂÁÐÃüÌ⣺
¢ÙÈô{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬ÔòSn=nan£¨n¡ÊN*£©£»
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôò{an}ÊǵȲîÊýÁУ»
¢ÛÈôSn=3n+1£¬Ôò{an}ÊǵȱÈÊýÁУ»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©Ò²³ÉµÈ±ÈÊýÁУ»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬Ôò3q-1=0£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
 
£®£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£ºÓɼÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁеÄÊýÁÐΪ·ÇÁã³£ÊýÁÐ˵Ã÷¢ÙÕýÈ·£»ÓÉÊýÁеÄÇ°nÏîºÍÇó³öͨÏʽ˵Ã÷¢ÚÕýÈ·£¬¢Û´íÎó£»¾Ù·´Àý˵Ã÷¢Ü´íÎó£»Ö±½ÓÓɵȱÈÊýÁеÄÇ°nÏîºÍ½áºÏµÈ²îÊýÁеÄÐÔÖÊÁÐʽ·ÖÎö¢ÝÕýÈ·£®
½â´ð£º ½â£º¢ÙÈô{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬ÔòÊýÁÐΪ·ÇÁã³£ÊýÁУ¬¡àSn=nan£¨n¡ÊN*£©£¬ÃüÌâ¢ÙÕýÈ·£»
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôòa1=S1=a+b£¬
an=Sn-Sn-1=an2+bn-[a£¨n-1£©2+b£¨n-1£©]=2an-a+b£¨n¡Ý2£©£®
ÑéÖ¤n=1ÉÏʽ³ÉÁ¢£¬¡àan=2an-a+b£¬Ôò{an}ÊǵȲîÊýÁУ¬ÃüÌâ¢ÚÕýÈ·£»
¢ÛÈôSn=3n+1£¬Ôòa1=S1=4£¬
an=Sn-Sn-1=3n+1-3n-1-1=2•3n-1£¨n¡Ý2£©£¬
ÑéÖ¤n=1ʱÉÏʽ²»³ÉÁ¢£¬Ôò{an}²»ÊǵȱÈÊýÁУ¬ÃüÌâ¢Û´íÎó£»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©²»Ò»¶¨³ÉµÈ±ÈÊýÁУ¬ÈçÊýÁÐ1£¬-1£¬1£¬-1£¬1£¬-1£¬1£¬-1£¬¡­£¬m=2ʱ²»³ÉÁ¢£¬ÃüÌâ¢Ü´íÎó£»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬
ÉèÆäÊ×ÏîΪa1£¬¹«±ÈΪq£¬Ôò2
a1(1-qm+1)
1-q
=
a1(1-qm)
1-q
+3
a1(1-qm+2)
1-q
£¬ÕûÀíµÃ3q-1=0£¬ÃüÌâ¢ÝÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÓÉÊýÁеÄÇ°nÏîºÍÇóÊýÁеÄͨÏʽ£¬¿¼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×Ïîa1¡Ù0£¬Ç°nÏîºÍÊÇSn£¬Ôò
S5n
S3n-S2n
µÈÓÚ£¨¡¡¡¡£©
A¡¢2B¡¢4C¡¢5D¡¢9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚRÉϵÄÆ溯Êýf£¨x£©ÔÚ[-1£¬0]Éϵ¥µ÷µÝ¼õ£¬ÔòÏÂÁйØϵʽÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢0£¼f£¨1£©£¼f£¨-1£©
B¡¢f£¨-1£©£¼f£¨1£©£¼0
C¡¢f£¨1£©£¼0£¼f£¨-1£©
D¡¢f£¨-1£©£¼0£¼f£¨1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎÄ×ö£©º¯Êýf£¨x£©=£¨x-1£©£¨x-2£©+£¨x-2£©£¨x-3£©+£¨x-3£©£¨x-1£©µÄÁ½¸öÁãµã·Ö±ðλÓÚÇø¼ä£¨¡¡¡¡£©
A¡¢£¨2£¬3£©ºÍ£¨3£¬+¡Þ£©ÄÚ
B¡¢£¨-¡Þ£¬1£©ºÍ£¨1£¬2£©ÄÚ
C¡¢£¨1£¬2£©ºÍ£¨2£¬3£©ÄÚ
D¡¢£¨-¡Þ£¬1£©ºÍ£¨3£¬+¡Þ£©ÄÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÃüÌâp£ºax2+2ax+1£¾0µÄ½â¼¯ÊÇʵÊý¼¯R£»ÃüÌâq£º0£¼a£¼1£¬ÔòpÊÇqµÄ
 
£®£¨Ìî¡°³ä·Ö²»±ØÒªÌõ¼þ¡±¡°±ØÒª²»³ä·ÖÌõ¼þ¡±¡°³äÒªÌõ¼þ¡±¡°¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijµØÇøÐÄÔಡÈËÊý³ÊÉÏÉýÇ÷ÊÆ£¬¾­Í³¼Æ·ÖÎö£¬´Ó2004Äêµ½2013ÄêµÄÊ®Äê¼äÿÁ½ÄêÉÏÉý4%£¬2012ÄêºÍ2013Äê¹²·¢²¡1000ÈË£®ÈôÒÔ´Ëͳ¼ÆΪÒÀ¾Ý£¬ÇëÔ¤¼Æ´Ó2014µ½2017Ä꽫»á·¢²¡µÄÈËÊýԼΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª£¨a8-1£©3+2015£¨a8-1£©=1£¬£¨a2008-1£©3+2015£¨a2008-1£©=-1£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢S2015=2015£¬a2008£¼a8
B¡¢S2015=2015£¬a2008£¾a8
C¡¢S2015=-2015£¬a2008¡Üa8
D¡¢S2015=-2015£¬a2008¡Ýa8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCµÄÈý±ßΪa£¬b£¬c£¬ÈôC=
¦Ð
2
£¬Ôò
a+b
c
µÄ×î´óֵΪ£¨¡¡¡¡£©
A¡¢
2
2
B¡¢1
C¡¢
2
D¡¢2
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ln£¨2x-e£©£¬µãP£¨e£¬f£¨e£©£©Îªº¯ÊýµÄͼÏóÉÏÒ»µã£®
£¨1£©Ç󵼺¯Êýf¡ä£¨x£©µÄ½âÎöʽ£»
£¨2£©£©Çóf£¨x£©=ln£¨2x-e£©ÔÚµãP£¨e£¬f£¨e£©£©´¦µÄÇÐÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸