精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(I)求f(x)的图象的对称中心坐标;
(II)在△ABC中,A、B、C所对边分别为,若f(C)=1,且b2=ac,求sinA.
分析:(I)f(x)解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的对称中心即可确定出f(x)的图象的对称中心坐标;
(II)由f(C)=1,利用第一问确定的函数解析式求出C的度数为
π
2
,利用勾股定理列出关系式,将已知等式代入,利用正弦定理化简即可求出sinA的值.
解答:解:(I)f(x)=
3
sin
2x
3
+cos
2x
3
-1=2sin(
2x
3
+
π
6
)-1,
2x
3
+
π
6
=kπ(k∈Z),得x=
3kπ
2
-
π
4
,此时f(x)=-1,
则f(x)的图象的对称中心坐标为(
3kπ
2
-
π
4
,-1)(k∈Z);
(II)在△ABC中,由f(C)=1,得到2sin(
2C
3
+
π
6
)-1=1,即sin(
2C
3
+
π
6
)=1,
2C
3
+
π
6
=
π
2
,即C=
π
2

∵b2=ac,∴c2=a2+b2=a2+ac,
利用正弦定理化简得:sin2C=sin2A+sinAsinC,即sin2A+sinA-1=0,
解得:sinA=
5
-1
2
点评:此题考查了正弦定理、余弦定理,正弦函数的对称性,二倍角的正弦、余弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案