精英家教网 > 高中数学 > 题目详情
18.函数$f(x)=\sqrt{x+1}+\frac{1}{x-3}$的定义域为(  )
A.(-3,0]B.(-3,1]C.[-1,3)∪(3,+∞)D.[-1,3)

分析 根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:要使函数$f(x)=\sqrt{x+1}+\frac{1}{x-3}$有意义,
须$\left\{\begin{array}{l}{x+1≥0}\\{x-3≠0}\end{array}\right.$,
解得x≥-1且x≠3,
∴f(x)的定义域为[-1,3)∪(3,+∞).
故选:C.

点评 本题考查了根据函数的解析式求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对于任意实数x,不等式sinx+cosx>m恒成立,则实数m的取值范围是(-∞,-$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=$\frac{\sqrt{3}}{2}$,△DEF2的面积为1-$\frac{\sqrt{3}}{2}$.若M(x0,y0)在椭圆C上,则点N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}{b}$)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知OP⊥OQ.
(1)求椭圆的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知中心在原点,离心率为$\frac{1}{2}$的椭圆E的一个焦点为圆:x2+y2-4x+2=0的圆心,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为(  )
A.16π+$\sqrt{3}π$B.16π+8$\sqrt{3}$πC.16π+$\frac{8}{3}\sqrt{3}π$D.16π+$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+1)=x2-5x+4,则f(1)等于(  )
A.0B.1C.4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线ax-by+8=0(a>0,b>0)经过x2+y2+4x-4y=0的圆心,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率$\frac{2\sqrt{3}-3}{3}$.

查看答案和解析>>

同步练习册答案