精英家教网 > 高中数学 > 题目详情
10.已知实数x,y满足$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}\right.$,则z=y-2x的最大值是(  )
A.2B.4C.5D.6

分析 先画出满足条件的平面区域,由z=y-2x得;y=2x+z,由图象得直线y=2x+z过A(-2,2)时取到最大值,求出z的最大值即可.

解答 解:画出满足条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}\right.$的平面区域,如图示:

由$\left\{\begin{array}{l}{y=2}\\{x-y+4=0}\end{array}\right.$,解得:A(-2,2),
由z=y-2x得;y=2x+z,
由图象得直线y=2x+z过A(-2,2)时取到最大值,
z的最大值是:6,
故选:D.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.点P在边长为2的正方形ABCD内运动,则动点P到定点A的距离|PA|<1的概率为(  )
A.$\frac{π}{4}$B.$\frac{π}{16}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函数f(x)-g(x)在区间(0,+∞)上减函数,求k的取值范围;
(2)当k=2时,若函数f(x)的图象是函数g(x)的图象的切线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若集合A={x||x-1|<2},B={x|$\frac{x-2}{x+4}$<0},则A∩B=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“a<2”是“实系数一元二次方程x2+ax+1=0有虚根”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知锐角α的终边上一点P(sin40°,cos40°),则α等于(  )
A.20°B.40°C.50°D.80°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U=R,集合A={x|x2-2ax-3a2<0},B={x|x2-2x-a2-2a<0}.
(1)当a=12时,求(∁UB)∩A;
(2)命题P:x∈A,命题q:x∈B,若q是P的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知不等式ax2+bx+c<0的解集为(1,2),则不等式$\frac{ax-b}{cx+a}$<0的解集为(  )
A.(-∞,$\frac{1}{2}$)∪(3,+∞))B.($\frac{1}{2}$,3)C.(-3,-$\frac{1}{2}$)D.(-∞,-3)$∪(-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.空间四边形ABCD中,每条边长及对角线长都是a,E,F分别是AD、AC的中点,则$\overrightarrow{FE}$•$\overrightarrow{CE}$等于(  )
A.$\frac{3}{8}$a2B.$\frac{1}{4}$a2C.$\frac{\sqrt{3}}{8}$a2D.$\frac{3}{4}$a2

查看答案和解析>>

同步练习册答案