【题目】某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳元(为常数,)的管理费.根据多年的统计经验,预计当每件产品的售价为元时,产品一年的销售量为为自然对数的底数)万件.已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价最低不低于35元,最高不超过41元.
(Ⅰ)求分公司经营该产品一年的利润万元与每件产品的售价元的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该产品一年的利润最大,并求的最大值.
【答案】(1) L(x)= 500(x-30-a)e40-x(35≤x≤41);(2) 当2≤a≤4时,每件产品的售价为35元,该产品一年的利润L(x)最大,最大为500(5-a)e5万元;当4<a≤5时,每件产品的售价为(31+a)元时,该产品一年的利润L(x)最大,最大为500e9-a万元.
【解析】
试题分析:(1)先根据条件求出k,再根据利润等于销售量乘以单个利润得函数解析式,最后交代定义域(2)先求导数,再求导函数零点,根据零点与定义区间关系分类讨论,确定导函数符号,进而确定最大值
试题解析:(1)由题意,该产品一年的销售量为y=.
将x=40,y=500代入,得k=500e40.
故该产品一年的销售量y(万件)关于x(元)的函数关系式为y=500e40-x.
所以L(x)=(x-30-a)y=500(x-30-a)e40-x(35≤x≤41).
(2)由(1)得,L′(x)=500[e40-x-(x-30-a)e40-x]=500e40-x(31+a-x).
①当2≤a≤4时,L′(x)≤500e40-x(31+4-35)=0,
当且仅当a=4,x=35时取等号.
所以L(x)在[35,41]上单调递减.
因此,L(x)max=L(35)=500(5-a)e5.
②当4<a≤5时,L′(x)>035≤x<31+a,
L′(x)<031+a<x≤41.
所以L(x)在[35,31+a)上单调递增,在[31+a,41]上单调递减.
因此,L(x)max=L(31+a)=500e9-a.
综上所述当2≤a≤4时,每件产品的售价为35元,该产品一年的利润L(x)最大,最大为500(5-a)e5万元;
当4<a≤5时,每件产品的售价为(31+a)元时,该产品一年的利润L(x)最大,最大为500e9-a万元.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为 ,过点且斜率为的直线交曲线于两点,交圆于两点(两点相邻).
(Ⅰ)若,当时,求的取值范围;
(Ⅱ)过两点分别作曲线的切线,两切线交于点,求与面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线:,直线:.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.
(1)求直线,的直角坐标方程以及曲线的参数方程;
(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·湖北襄阳模拟)已知椭圆C: (a>b>0)的焦点为F1,F2,P是椭圆C上一点,若PF1⊥PF2,|F1F2|=2,△PF1F2的面积为1.
(1)求椭圆C的方程;
(2)如果椭圆C上总存在关于直线y=x+m对称的两点A,B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).
(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成的函数;
(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com