精英家教网 > 高中数学 > 题目详情
若对于一切实数x,y,都有f(x+y)=f(x)+f(y):
(1)求f(0),并证明f(x)为奇函数; 
(2)若f(1)=3,求f(-5).
考点:抽象函数及其应用,函数奇偶性的判断,函数的值
专题:函数的性质及应用
分析:(1)利用已知条件直接反证法,求f(0),然后通过反证法结合函数的奇偶性的定义,证明f(x)为奇函数; 
(2)通过已知条件化简f(-5=5f(-1),利用f(1)=3,即可求f(-5).
解答: 解:(1)由于对一切实数x,y,都有f(x+y)=f(x)+f(y),
故在上式中可令x=y=0,则有:f(0+0)=f(0)+f(0),所以f(0)=0.…(2分)
再令 y=-x,则有:f[x+(-x)]=f(x)+f(-x),
所以:f(x)+f(-x)=f(0)=0,即f(-x)=-f(x),f(x)为奇函数.…(5分)
(2)由于f(x)为奇函数,且f(x+y)=f(x)+f(y),
f(-5)=f[(-1)+(-1)+(-1)+(-1)+(-1)]=f(-1)+f(-1)+f(-1)+f(-1)+f(-1)
=5f(-1)=-f(1)=-5×3=-15…(8分)
点评:本题考查抽象函数的应用,函数的奇偶性的证明,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数的图象如图所示,为了得到的图象,则只要将f(x)=cos2x的函数的图象(  )
A、向右平移
π
6
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向左平移
π
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

在映射f:A→B中,A=B=R,且f:(x,y)→(x-y,x+y),则与A中的元素(2,1)在B中的象为(  )
A、(-3,1)
B、(1,3)
C、(-1,-3)
D、(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

满足条件{1,3}∪M={1,3,5}的一个可能的集合M是
 
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(-x2+ax)ex(a∈R,e为自然对数的底数)
(1)若函数f(x)在x=0处的切线方程与直线x+2y-1=0垂直,求a的值;
(2)求函数f(x)的单调区间,
(3)若函数f(x)在x∈(-1,1)上单调递增,则a的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(xy)=f(x)+f(y)
(1)若x,y∈R,求f(1),f(-1)的值;
(2)若x,y∈R,判断y=f(x)的奇偶性;
(3)若函数f(x)在其定义域(0,+∞)上是增函数,f(2)=1,f(x)+f(x-2)≤3,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1<x≤3},B={x|1≤x<6},求∁R(A∪B)、∁R(A∩B)、(∁RA)∩B、A∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4,圆O与x轴交于A、B两点,过点B的圆的切线为l,P是圆上异于A、B的一点,PH垂直于x轴,垂足为H,E是PH的中点,延长AP,AE分别交l于F,C.
(1)若点P(1,
3
),求以FB为直径的圆的标准方程;
(2)当P在圆O上运动时,证明:直线PC恒与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

物体的运动方程是s=-
1
6
t3+2t2-5,求物体在t=3时的速度.

查看答案和解析>>

同步练习册答案