精英家教网 > 高中数学 > 题目详情
16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$+πB.$\frac{2}{3}$+2πC.$\frac{8}{3}$+8πD.$\frac{4}{3}$+4π

分析 由三视图可知:该几何体由两部分组成,左边为三棱锥,右边为圆柱的一半.即可得出.

解答 解:由三视图可知:该几何体由两部分组成,左边为三棱锥,右边为圆柱的一半.
∴V=$\frac{1}{3}×$$\frac{1}{2}×4×2×2$+$\frac{1}{2}×π×{2}^{2}×4$=$\frac{8}{3}$+8π.
故选:C.

点评 本题考查了三视图的有关知识与计算,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.下列结论正确的是(2)(3).
(1)函数f(x)=sinx在第一象限是增函数;
(2)△ABC中,“A>B”是“cosA<cosB”的充要条件;
(3)设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,命题“若|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|,则?t∈R,使得$\overrightarrow{a}$=t$\overrightarrow{b}$”的否命题和逆否命题都是真命题;
(4)函数f(x)=2x3-3x2,x∈[-2,t](-2<t<1)的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程logax=x-2(0<a<1)的实数解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式(各式均有意义)不正确的个数为(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a-x}{x}$,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,定点A(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)在椭圆上,F1,F2为椭圆的左、右焦点,定直线l的方程为x=-4,过椭圆上一点P作切线m与l交于T点,过P且垂直于直线m的直线n交F1F2于点M.
(1)求椭圆的方程;
(2)设椭圆的离心率为e,求证:$\frac{{F}_{1}M}{P{F}_{1}}$=e;
(3)证明PM为∠F1PF2的平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平行四边形ABCD中,下列结论中错误的是(  )
A.$\overrightarrow{AB}=\overrightarrow{DC}$B.$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$C.$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$D.$\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,底面边长AB=3m,BC=4m,高BB1=5m,求:
(1)写出B1D、BC1在平面ABCD内的射影;
(2)对角线DB1与平面ABCD所成角的大小;
(3)BC1与平面ABCD所成角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x2+y2=4,x>0,y>0,且loga(2+x)=m,loga$\frac{1}{2-x}$=n,则logay等于(  )
A.m+nB.m-nC.$\frac{1}{2}$(m+n)D.$\frac{1}{2}$(m-n)

查看答案和解析>>

同步练习册答案