精英家教网 > 高中数学 > 题目详情
如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则f(x)均为“V型函数”.则下列函数:
①f(x)=
x
;  ②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“V型函数”的序号为(  )
分析:任意一个三角形三边长满足任意两边之和大于第三边,故由新定义知,判断是否为“Л型函数”,即判断a+b>c时,是否一定有f(a)+f(b)>f(c),①③可由基本不等式判断,②取特值;分析可得答案.
解答:解:设0<a≤b≤c,a+b>c,欲证
a
+
b
c
,只需证明a+b+2
ab
>c,.①是V型函数”;
取 a=
π
2
,b=c=
6
,而sinb+sinc=sina,②不是V型函数”;
由于(a-2)(b-2)≥0,ab-2(a+b)+4≥0,ab≥(a+b)+(a+b)-4>(a+b)>c,③是“V型函数”.
故选B.
点评:本题为新定义题,正确理解定义是解题的关键,考查综合分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(1)判断下列函数是不是“保三角形函数”,并证明你的结论:
①f(x)=
x
;    ②g(x)=sinx (x∈(0,π)).
(2)若函数h(x)=lnx (x∈[M,+∞))是保三角形函数,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“Л型函数”.则下列函数:①f(x)=
x
;②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“Л型函数”的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=
x
,②f2(x)=x,③f3(x)=x2中,其中
 
是“保三角形函数”.(填上正确的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角形函数”.
(1)判断f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“三角形函数”,哪些不是,并说明理由;
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
6
时,F(x)不是“三角形函数”.

查看答案和解析>>

同步练习册答案