精英家教网 > 高中数学 > 题目详情

【题目】若不等式|mx3﹣lnx|≥1对x∈(0,1]恒成立,则实数m的取值范围是

【答案】[ e2 , +∞)
【解析】解:|mx3﹣lnx|≥1对任意x∈(0,1]都成立
等价为mx3﹣lnx≥1,或mx3﹣lnx≤﹣1,
即m≥ ,记f(x)= ,或m≤ ,记g(x)=
f'(x)= =
由f'(x)= =0,
解得lnx=﹣ ,即x=e﹣
由f(x)>0,解得0<x<e﹣ ,此时函数单调递增,
由f(x)<0,解得x>e﹣ ,此时函数单调递减,
即当x=e﹣ 时,函数f(x)取得极大值,同时也是最大值f(e )= = = e2 , 此时m≥ e2
若m≤
∵当x=1时, =﹣1,
∴当m>0时,不等式m≤ 不恒成立,
综上m≥ e2
所以答案是:[ e2 , +∞).
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+ x2﹣bx.
(1)求实数a的值;
(2)若函数g(x)存在单调递减区间,求实数b的取值范围;
(3)设x1 , x2(x1<x2)是函数g(x)的两个极值点,若b≥ ,求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 满足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通项公式;
(2)若S3 , S9 , S6成等差数列,求证:a2 , a8 , a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函数f(x)在x=2处取得极值.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三年级期末统考测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次测试数学成绩的中位数;

(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取3个数,有放回地抽取了3次,记这3次抽取中,恰好是三个学生的数学成绩的次数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(a,a),B(2,3),C(3,2).
(1)若向量 的夹角为钝角,求实数a的取值范围;
(2)若a=1,点P(x,y)在△ABC三边围成的区域(含边界)上, =m +n (m,n∈R),求m﹣n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点,则下列说法错误的是(  )

A. B. 平面

C. D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:

井号

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;

(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值(精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

同步练习册答案