精英家教网 > 高中数学 > 题目详情
在x∈上,函数f(x)=x2+px+q与在同一点取得相同的最小值,那么f(x)在上的最大值是
[     ]
A.
B.4
C.8
D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+y)=f(x)•f(y)(x,y∈R),且当x>0时,f(x)>1;f(2)=4.
(Ⅰ)求f(1),f(-1)的值;    
(Ⅱ)证明:f(x)是单调递增函数;
(III) 若f(x2-ax+a)≥
2
对任意x∈(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:①函数y=f(x-2)的图象关于直线x=2对称;②f(x+2)=-f(x);③f(x)在[-2,0]上是增函数.
下列关于f(x)的命题:
①函数f(x)是周期函数;
②函数f(x)的图象关于直线x=2对称;
③函数f(x)在[0,1]上是增函数;
④函数f(x)在[2,4]上是减函数;
⑤f(4)=f(0).
其中真命题是
①②④⑤
①②④⑤
(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数,对任意x1,x2∈R,都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
,则称函数f(x)是R上的凸函数.已知二次函数f(x)=ax2+x(a∈R,a≠0).
(1)求证:当a<0时,函数f(x)是凸函数;
(2)对任意x∈(0,1],f(x)≥-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个“承托函数”.现有如下命题:
①g(x)=2x为函数f(x)=2x的一个承托函数;
②若g(x)=kx-1为函数f(x)=xlnx的一个承托函数,则实数k的取值范围是[1,+∞);
③定义域和值域都是R的函数f(x)不存在承托函数;
④对给定的函数f(x),其承托函数可能不存在,也可能有无数个.
其中正确的命题是

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(其中ai∈R,i=0,1,2,3,4),当x=-1时,f(x)取得极大值,并且函数y=f(x+1)的图象关于点(-1,0)对称,
(1)求f(x)的表达式;
(2)试在函数f(x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间上;
(3)若,求证:

查看答案和解析>>

同步练习册答案