精英家教网 > 高中数学 > 题目详情
12.已知函数y=a-bcos3x(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求函数y=-4asin3bx的单调区间、最大值和最小正周期.

分析 由三角函数的值域,列出方程组,求出a,b,再由正弦函数的值域和周期性,即可得到;运用正弦函数的单调区间,

解答 解:( I)由已知条件得$\left\{\begin{array}{l}{a+b=\frac{3}{2}}\\{a-b=-\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$
∴y=-2sin3x的最小正周期为T=$\frac{2π}{3}$,其最大值为2,
在区间[-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{6}$+$\frac{2kπ}{3}$](k∈z)上是减函数,
在区间[$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈z)上是增函数.

点评 本题考查正弦函数和余弦函数的值域的运用,考查三角函数的周期和单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知正六边形ABCDEF,在下列表达式中与$\overrightarrow{AC}$等价的有(  )
①$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$;②2$\overrightarrow{BC}$+$\overrightarrow{DC}$;③$\overrightarrow{FE}$+$\overrightarrow{ED}$;④2$\overrightarrow{ED}$-$\overrightarrow{FA}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若(2,+∞)为函数y=2x-$\frac{a}{x}$的递增区间,则a的取值范围为(  )
A.a≥-8B.-8<a<0C.a<-8D.a>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(文)在△ABC中,已知sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,则cosC=-$\frac{16}{65}$;
(理)在△ABC中,已知tanA,tanB是x的方程x2+p(x+1)+1=0的两个根,则∠C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积(画出图形).
(2)已知a,b是正实数,求证:$\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}≥\sqrt{a}+\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(ω>0),如果存在实数x1使得对任意的实数x,都有f(x1)≤f(x)≤
f(x1+2015)成立,则ω的最小值为(  )
A.$\frac{π}{2015}$B.$\frac{1}{2015}$C.$\frac{π}{4010}$D.$\frac{1}{4010}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2-b2-c2=-$\sqrt{3}$bc,则A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线$\frac{x^2}{a^2}-\frac{{y{\;}^2}}{b^2}$=1的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.2C.$\sqrt{2}+1$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{m}$+y2=1和双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1有共同的焦点F1、F2,点P是它们的一个公共点,则△PF1F2的面积是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案