精英家教网 > 高中数学 > 题目详情

【题目】已知a0b0,则“12”a2+a3b2+2b的(

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

【答案】B

【解析】

利用换元法,令t,再根据充分性、必要性的定义进行求解即可.

根据题意,设t

又由a0b0,则有atb,且t0

a2+a3b2+2b,则有t2b2+tb3b2+2b,变形可得(t23b2t,则有0

又由t0,解可得:t2,即2

反之:若2,即t2

a2+a3b2+2bt2b2+tb3b2+2b,变形可得b0,成立,

2a2+a3b2+2b的充分必要条件,则“12”a2+a3b2+2b的必要不充分条件;

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2ρ24ρcosθ+30

1)求曲线C1的一般方程和曲线C2的直角坐标方程;

2)若点P在曲线C1上,点Q曲线C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是边长为的正方形,是正三角形,为线段的中点,点为底面内的动点,则下列结论正确的是( )

A.时,平面平面

B.时,直线与平面所成的角的正弦值为

C.若直线异面时,点不可能为底面的中心

D.若平面平面,且点为底面的中心时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆F1(x+1)2 +y2= r2(1≤r≤3),圆F2(x-1)2+y2= (4-r)2

(1)证明:圆F1与圆F2有公共点,并求公共点的轨迹E的方程;

(2)已知点Q(m0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于MN两点,记直线QM的斜率为k1,直线QN的斜率为k2,是否存在实数m使得k(k1+k2)为定值?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称.为自然对数的底数)

1)若的图象在点处的切线经过点,求的值;

2)若不等式恒成立,求正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的棱长均为2OAC的中点,平面A'OB平面ABC,平面平面ABC.

1)求证:A'O⊥平面ABC

2)求二面角ABCC'的余弦值.

查看答案和解析>>

同步练习册答案