精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的右焦点为过点作与轴垂直的直线交椭圆于两点(点在第一象限),过椭圆的左顶点和上顶点的直线与直线交于且满足为坐标原点则该椭圆的离心率为( )

A. B. C. D.

【答案】A

【解析】分析根据向量共线定理及可推出的值再根据过点作与轴垂直的直线交椭圆于两点(点在第一象限)可推出两点的坐标,然后求出过椭圆的左顶点和上顶点的直线的方程即可求得点的坐标从而可得三者关系进而可得椭圆的离心率.

详解:∵三点共线

过点作与轴垂直的直线交椭圆于两点(点在第一象限)

∵过椭圆的左顶点和上顶点的直线与直线交于

直线的方程为为

,即.

.

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC对边的边长分别是abc,且acosB+cosC)=b+c

1)求证:A

2)若△ABC外接圆半径为1,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆台的上、下底面半径分别为,母线长,从圆台母线的中点拉一条绳子绕圆台侧面转到在下底面,求:

1绳子的最短长度;

2在绳子最短时,上底圆周上的点到绳子的最短距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列关于函数的单调性说法正确的是(

A.函数上不具有单调性

B.时,上递减

C.的单调递减区间是,则a的值为

D.在区间上是减函数,则a的取值范围是

E.在区间上不可能是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在吸烟与患肺病是否相关的判断中,有下面的说法:

1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有的可能性使得推断错误.

2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有的可能患有肺病;

3)若,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

其中说法正确的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.

(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的生成函数.

1)函数,是否为的生成函数?说明理由;

2)设,当时生成函数,求的对称中心(不必证明);

3)设,取,生成函数,若函数的最小值是5,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面底面ABCDMPD的中点.

1)求证:平面PCD

2)求侧面PBC与底面ABCD所成二面角的余弦值.

查看答案和解析>>

同步练习册答案