精英家教网 > 高中数学 > 题目详情
已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围(  )
A.(0,
2
3
3
)
B.(0,
3
3
)
C.(
2
3
3
,1)
D.(
3
3
,1)
不防设椭圆方程:
x2
a2
+
y2
b2
=1
(a>b>0),
再不妨设:B(0,b),三角形重心G(c,0),
延长BG至D,使|GD|=
|BG|
2

设D(x,y),则
BD
=(x,y-b)
BF
=(c,-b)

BF
=
2
3
BD
,得:(c,-b)=
2
3
(x,y-b)

解得:x=
3
2
c
y=-
b
2

而D(
3
2
c,-
b
2
)
是椭圆的内接三角形一边AC的中点,
所以,D点必在椭圆内部,
(
3
2
c)2
a2
+
(-
b
2
)2
b2
<1

把b2=a2-c2代入上式整理得:
c2
a2
1
3

e<
3
3

又因为椭圆离心率e∈(0,1),
所以,该椭圆离心率e的取值范围是(0,
3
3
)

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围.


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(理科)(解析版) 题型:选择题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案