精英家教网 > 高中数学 > 题目详情
11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

分析 由条件利用同角三角函数的基本关系求得tanα=3,再利用二倍角公式,两角和差的正弦公式化简要求的式子,可得结果.

解答 解:∵tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),∴tanα=3,
∴sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{\sqrt{2}}{2}$sin2α+$\frac{\sqrt{2}}{2}$cos2α+2•$\frac{\sqrt{2}}{2}$•$\frac{1-cos2α}{2}$
=$\frac{\sqrt{2}}{2}$sin2α+$\frac{\sqrt{2}}{2}$═$\frac{\sqrt{2}}{2}$•$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$+$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$•$\frac{2tanα}{{tan}^{2}α+1}$+$\frac{\sqrt{2}}{2}$ 
=$\frac{\sqrt{2}}{2}$•$\frac{6}{10}$+$\frac{\sqrt{2}}{2}$=$\frac{4\sqrt{2}}{5}$,
故答案为:$\frac{4\sqrt{2}}{5}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式,两角和差的正弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$=(-2,m),$\overrightarrow{b}$=(1,$\sqrt{3}$),且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数m的值为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意x∈R,不等式f(x)≥4x恒成立.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)=logb[f(x)+4]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.椭圆的离心率e满足$\frac{\sqrt{3}}{3}$≤e≤$\frac{\sqrt{2}}{2}$,则椭圆长轴的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\sqrt{3}$,2]C.[$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{6}}{2}$]D.[$\sqrt{5}$,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,a2=3,S5=25,正项数列{bn}满足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$对一切正整数n均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=eax+2x(x∈R)有大于零的极值点,则实数a的取值范围是(  )
A.a>-2B.a<-2C.a$>-\frac{1}{2}$D.a$<-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,求目标函数Z=y-2x的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求函数f(x)=x3-3x+3在区间[-2,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案