精英家教网 > 高中数学 > 题目详情
13.方程x2+y2-2y=0所表示的曲线的特征是(  )
A.关于直线y=x对称B.关于原点对称C.关于x轴对称D.关于y轴对称

分析 判断圆的圆心坐标所在位置,即可得到结果.

解答 解:方程x2+y2-2y=0即x2+(y-1)2=1,是以(0,1)为圆心以1为半径的圆,
图象关于y轴对称.
故选:D.

点评 本题考查圆的一般方程的应用,圆的简单性质的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4x-a•2x+1-6,x∈[0,1],
(1)若函数有零点,求a的取值范围;
(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}满足:a1=2,an+1=1-$\frac{1}{a_n}$,记数列{an}的前n项之积为Tn,则T2016的值为(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{x}{x+1}$,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=(  )
A.2009B.2010C.2011D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=(m2-m-1)${x}^{{m}^{2}-3m-3}$是幂函数,且在区间(0,+∞)上为增函数,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}=2\overrightarrow{AF}$,则双曲线C的离心率(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,当xy最大时,该几何体外接球的表面积为(  )
A.32πB.64πC.128πD.136π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若MF1⊥MF2,|MF1||MF2|=8,则该椭圆的方程是(  )
A.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x(x≥0)\\{x^2}-2x(x<0)\end{array}$,又α,β为锐角三角形两锐角则(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

同步练习册答案