分析 可假设点M在平面ABC内,从而可以根据平面向量基本定理得到,存在λ,μ,使得$\overrightarrow{MA}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,然后根据向量减法的几何意义便可得到$\overrightarrow{OM}=(1+λ+μ)\overrightarrow{OA}-λ\overrightarrow{OB}-μ\overrightarrow{OC}$,1+λ+μ-λ-μ=1,而2-1-1≠1,这样由空间向量基本定理便知假设不成立,从而便得出点M不在平面ABC内.
解答 证明:假设点M在平面ABC内,∵A,B,C三点不共线,则:根据平面向量基本定理知,存在实数λ,μ使:
$\overrightarrow{MA}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$;
∴$\overrightarrow{OA}-\overrightarrow{OM}=λ(\overrightarrow{OB}-\overrightarrow{OA})+μ(\overrightarrow{OC}-\overrightarrow{OA})$;
∴$\overrightarrow{OM}=(1+λ+μ)\overrightarrow{OA}-λ\overrightarrow{OB}-μ\overrightarrow{OC}$;
∴1+λ+μ-λ-μ=1,而2-1-1=0≠1;
∴假设不成立,即点M不在平面ABC内.
点评 考查平面向量基本定理和空间向量基本定理,以及反证法证明命题的方法,向量减法的几何意义,向量的加法和数乘运算.
科目:高中数学 来源: 题型:填空题
命中环数 | 10 | 9 | 8 | 7 |
概 率 | 0.12 | 0.18 | 0.28 | 0.32 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com