5£®£¨1£©Ö±ÏßÏß$\left\{\begin{array}{l}{x=-2+tcos30¡ã}\\{y=3-tsin60¡ã}\end{array}\right.$£¨tΪ²ÎÊý£©µÄÇãб½ÇΪ135¡ã£»
£¨2£©ÒÑÖª²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=£¨t+\frac{1}{t}£©sin¦È}\\{y=£¨t-\frac{1}{t}£©cos¦È}\end{array}\right.$£¨t¡Ù0£©£®
¢ÙÈôtΪ²ÎÊý£¬·½³Ì±íʾʲôÇúÏߣ¿
¢ÚÈô¦ÈΪ²ÎÊý£¬·½³Ì±íʾʲôÇúÏߣ¿
£¨3£©²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=sin¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©±íʾʲôÇúÏߣ¿

·ÖÎö £¨1£©Çó³öÖ±ÏßµÄÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³öÖ±ÏßµÄÇãб½Ç£®
£¨2£©¢Ùµ±sin¦È=0ʱ£¬·½³Ì±íʾһÌõÖ±Ïߣ¬¼´yÖ᣻µ±cos¦È=0ʱ£¬±íʾxÖáÉϵÄÁ½ÌõÉäÏߣ»µ±sin¦È¡Ù0£¬ÇÒcos¦È¡Ù0ʱ£¬±íʾ˫ÇúÏߣ®
¢Út¡Ù¡À1ʱ£¬±íʾ½¹µãÔÚxÖáÉϵÄÍÖÔ²£¬µ±t=1ʱ£¬±íʾxÖáÉϵÄÒ»ÌõÏ߶Σ®
£¨3£©ÏȰѲÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïß$\left\{\begin{array}{l}{x=-2+tcos30¡ã}\\{y=3-tsin60¡ã}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊýt£¬µÃÖ±ÏßµÄÆÕͨ·½³ÌΪ£ºx+y-1=0£¬
¡àÖ±ÏßµÄбÂÊk=-1£¬¡àÖ±ÏßµÄÇãб½ÇΪ135¡ã£®
¹Ê´ð°¸Îª£º135¡ã£®
£¨2£©¢Ù¡ß²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=£¨t+\frac{1}{t}£©sin¦È}\\{y=£¨t-\frac{1}{t}£©cos¦È}\end{array}\right.$£¨t¡Ù0£©£¬tΪ²ÎÊý£¬
¡àµ±sin¦È=0ʱ£¬·½³Ì±íʾһÌõÖ±Ïߣ¬¼´yÖ᣻µ±cos¦È=0ʱ£¬±íʾxÖáÉϵÄÁ½ÌõÉäÏߣ»
µ±sin¦È¡Ù0£¬ÇÒcos¦È¡Ù0ʱ£¬°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬µÃ£º
$\frac{{x}^{2}}{si{n}^{2}¦È}+\frac{{y}^{2}}{co{s}^{2}¦È}$=2£¨${t}^{2}+\frac{1}{{t}^{2}}$£©£¬±íʾ˫ÇúÏߣ®
¢Ú¡ß²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=£¨t+\frac{1}{t}£©sin¦È}\\{y=£¨t-\frac{1}{t}£©cos¦È}\end{array}\right.$£¨t¡Ù0£©£¬¦ÈΪ²ÎÊý£¬
¡àt¡Ù¡À1ʱ£¬$\frac{{x}^{2}}{£¨t+\frac{1}{t}£©^{2}}$+$\frac{{y}^{2}}{£¨t-\frac{1}{t}£©^{2}}$=1£¬±íʾ½¹µãÔÚxÖáÉϵÄÍÖÔ²£¬
µ±t=1ʱ£¬±íʾxÖáÉϵÄÒ»ÌõÏ߶Σ®
£¨3£©²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=sin¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©»¯³ÉÆÕͨ·½³ÌµÃ£º${x}^{2}+\frac{{y}^{2}}{3}=1$£¬
±íʾ½¹µãÔÚyÖáÉϵÄÍÖÔ²£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÇãб½ÇµÄÇ󷨣¬¿¼²éÇúÏßÐÎ×´µÄÅжϣ¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¦Á¡¢¦Â¾ùΪÈñ½Ç£¬ÇÒcos¦Á=$\frac{2\sqrt{5}}{5}$£¬cos¦Â=$\frac{\sqrt{10}}{10}$£¬Çó¦Á-¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÈçͼËùʾ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬MÊÇBB1µÄÖе㣬»¯¼òÏÂÁи÷ʽ£¬²¢ÔÚͼÖбê³ö»¯¼òµÃµ½µÄÏòÁ¿£º
£¨1£©$\overrightarrow{CB}$+$\overrightarrow{B{A}_{1}}$£»
£¨2£©$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$£»
£¨3£©$\overrightarrow{A{A}_{1}}$-$\overrightarrow{AC}$-$\overrightarrow{CB}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®1¡«100ÖÐËùÓÐÆæÊýµÄºÍΪ£¨¡¡¡¡£©
A£®99B£®1250C£®2500D£®2525

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªµãA£¨1£¬2£©ÔÚÔ²C£º£¨x+a£©2+£¨y-a£©2=2a2µÄÍⲿ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£¨-¡Þ£¬0£©¡È£¨0£¬$\frac{5}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÃݺ¯Êýf£¨x£©=£¨t3-t+1£©${x}^{\frac{7+3t-2{t}^{2}}{5}}$ÊÇżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÔòtµÄֵΪ1»ò-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®º¯Êýf£¨x£©=ln£¨x2-2x-3£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-1£¬3£©B£®£¨-¡Þ£¬-1£©¡È£¨3£¬+¡Þ£©C£®[-3£¬1]D£®£¨-¡Þ£¬-1]¡È[3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬ÓÒ½¹µãΪ£¨2$\sqrt{2}$£¬0£©£¬¹ýµãP£¨-2£¬1£©Ð±ÂÊΪ1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{e}^{x}-1}{{e}^{x}+1}$£®
£¨1£©ÅжÏf£¨x£©µÄÆæżÐÔ£»
£¨2£©ÅжÏf£¨x£©ÔÚRÉϵĵ¥µ÷ÐÔ£¬²¢Ì½¾¿ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹²»µÈʽf£¨x£©+f£¨x2-t2£©¡Ý0¶ÔÒ»ÇÐx¡Ê[1£¬2]ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ötµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸