精英家教网 > 高中数学 > 题目详情
20.如图所示,四面体P-ABC中,$∠APB=∠BPC=∠CPA=\frac{π}{2}$,PA=4,PB=2,$PC=\sqrt{5}$,则四面体P-ABC的外接球的表面积为25π.

分析 以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.

解答 解:由题意,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.
∵PA=4,PB=2,$PC=\sqrt{5}$,
∴长方体的对角线长为5,
∴球直径为5,半径R=2.5,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×2.52=25π
故答案为:25π.

点评 本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.集合P={x|(x-1)2<4,x∈R},Q={-1,0,1,2,3},则P∩Q=(  )
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,焦距为$2\sqrt{2}$,抛物线${C_2}:{x^2}=2py(p>0)$的焦点F是椭圆C1的顶点.
(I)求C1与C2′的标准方程;
(II)已知直线y=kx+m与C2相切,与C1交于P,Q两点,且满足∠PFQ=90°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,PA⊥⊙O面,PA=2,AB为⊙O的直径,其长为4,四边形ABCD内接于圆O,且∠ADC=120°.
(1)求点C到平面PAB的距离;
(2)当D在$\widehat{AC}$上什么位置时,BC∥平面POD;
(3)在(2)的条件下,求二面角D-PC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“$\frac{1}{x}<\frac{1}{2}$”是“x>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个长方体共顶点的三个面的面积分别是$\sqrt{2},\sqrt{3},\sqrt{6}$,这个长方体的八个顶点都在同一个球面上,则这个球的表面积是6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:函数$y=sin\frac{π}{2}x$在x=a处取到最大值;命题q:直线x-y+2=0与圆(x-3)2+(y-a)2=8相切;则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{2lnkx}$(k≠0)的图象在x=$\sqrt{e}$处的切线垂直于y轴.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设函数g(x)=-$\frac{x^2}{2}+alnx+a\;({a>0})$,若对于?x1,x2∈(1,+∞),总有f(x1)≥g(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,若$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A;       
(2)若b+c=4,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求边a的长.

查看答案和解析>>

同步练习册答案