【题目】如图,在四棱柱中,底面,,,且,. 点E在棱AB上,平面与棱相交于点F.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)写出三棱锥体积的取值范围. (结论不要求证明)
【答案】(Ⅰ)详见解析; (Ⅱ)详见解析;(Ⅲ).
【解析】
试题(Ⅰ)因为是棱柱,所以平面平面.由面面平行的性质定理,可得∥,再根据线面平行的判定定理即可证明结论;(Ⅱ)在四边形ABCD中,因为,,且,,,利用勾股定理可得,,又.又,根据面面垂直的判定定理即可证明结果;(Ⅲ)由题意可知,三棱锥的体积的取值范围是.
试题解析:(Ⅰ)证明:因为是棱柱,
所以平面平面.
又因为平面平面,
平面平面,
所以∥. 3分
又平面,平面,
所以∥平面. 6分
(Ⅱ)证明:在四边形ABCD中,
因为,,且,,,
所以,.
所以,
所以,即. 7分
因为平面平面,
所以.
因为在四棱柱中,,
所以. 9分
又因为平面,,
所以平面. 11分
(Ⅲ)解:三棱锥的体积的取值范围是. 14分.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,平面平面ABC,点D在线段BC上,且,E,F分别为线段PC,AB的中点,点G是PD上的动点.
(1)证明:.
(2)当平面PAC时,求直线PA与平面EFG所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于A,B两点.
求椭圆的方程;
设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点的坐标;若不存在,说明理由;
设,是线段为坐标原点上的一个动点,且,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第行的数字之和为______;去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平行四边形所在的平面与直角梯形所在的平面垂直,,,且,,,为的中点.
(1)求证:平面;
(2)求证:;
(3)若直线上存在点,使得,所成角的余弦值为,求与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,a1=2,且a1,a2,a3-2成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com