精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cosxcos(x-θ)-
1
2
cosθ(0<θ<π),且当x=
π
3
时f(x)取得最大值.
(1)求θ的值;
(2)当x∈[
π
6
,a]时f(x)的值域为[
1
4
1
2
],求实数a的取值范围.
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:(1)由三角函数公式可得f(x)=
1
2
cos(2x-θ),由最值可得
π
3
-θ=2kπ,k∈Z
,结合θ范围可得;
(2)由题意结合三角函数的值域可得2a-
3
∈[0,
π
3
]
,变形可得a的范围.
解答: 解(1)由题意可得f(x)=cosxcos(x-θ)-
1
2
cosθ
=cos2xcosθ+sinxcosxsinθ-
1
2
cosθ

=
1+cos2x
2
cosθ+
1
2
sin2xsinθ-
1
2
cosθ

=
1
2
cos(2x-θ)
又∵当x=
π
3
时f(x)取得最大值,
π
3
-θ=2kπ,k∈Z

又∵0<θ<π,∴θ=
3

(2)∵x∈[
π
6
,a]
,∴2x-
3
∈[-
π
3
,2a-
3
]

又∵f(x)的值域为[
1
4
1
2
]

2a-
3
∈[0,
π
3
]
,∴a∈[
π
3
π
2
]
点评:本题考查三角函数公式,涉及三角函数的值域,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0∈D,使得当x∈D且x>x0时,总有
|f(x)-h(x)|<m
|g(x)-h(x)|<m
,则称直线l:y=kx+b为曲线y=f(x)与y=g(x)的“公共渐近线”,给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=2-x+3,g(x)=
3x+1
x

②f(x)=
x2+1
x
,g(x)=
x2-1

③f(x)=
2x2
x+1
,g(x)=2(x-1-e-x);
④f(x)=log2x,g(x)=2x
其中曲线y=f(x)与y=g(x)存在“公共渐近线”的是(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥E-ABCD,底面ABCD是矩形,平面EDC⊥底面ABCD,ED=EC=BC=4,CF⊥平面BDE,且点F在EB上.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求三棱锥A-BDE的体积;
(Ⅲ)设点M在线段DC上,且满足DM=2CM,试在线段EB上确定一点N,使得MN∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科.
(1)是根据以上信息,写出2×2列联表;
(2)用假设检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?
参考公式K2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

P(K2≥k0 0.10 0.05 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

设在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=
an ,n≤5
b ,n>5
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的内角A、B、C的对边分别为a,b,c,且
3
a=2bsinA.
(Ⅰ)求B的大小;
(Ⅱ)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x3-3x,过点P(1,-2)的直线l与曲线y=f(x)相切,求l的方程;
(2)设f(x)=-
1
3
x3+
1
2
x2+2ax,当0<a<2时,f(x)在1,4上的最小值为-
16
3
,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||x|≥1},函数g(x)=lg[x•(2-x)]的定义域为B.
(Ⅰ)求集合A,B.
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,a4=
1
8
,公比q为实数,则an=
 

查看答案和解析>>

同步练习册答案