【题目】设△ABC的内角A,B,C所对边分别为a,b,c.向量, ,
且.
(1)求A的大小;
(2)若,求的值.
科目:高中数学 来源: 题型:
【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;(提示数据: )
(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.
参考公式:回归直线的方程是,
其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆上任意一点,点与点关于原点对称,线段的垂直平分线分别与,交于,两点.
(1)求点的轨迹的方程;
(2)过点的动直线与点的轨迹交于,两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )
A. , , 依次成公比为2的等比数列,且
B. , , 依次成公比为2的等比数列,且
C. , , 依次成公比为的等比数列,且
D. , , 依次成公比为的等比数列,且
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com