精英家教网 > 高中数学 > 题目详情
9.已知tan(-α)=3,则$\frac{{{{sin}^2}α-sin2α}}{cos2α}$等于(  )
A.-$\frac{8}{3}$B.$\frac{8}{3}$C.-$\frac{15}{8}$D.$\frac{15}{8}$

分析 展开二倍角的正弦公式和余弦公式,整理后化为含有tanα的代数式,则答案可求.

解答 解:由tan(-α)=3,
得tanα=-3,
则$\frac{{{{sin}^2}α-sin2α}}{cos2α}$=$\frac{si{n}^{2}α-2sinαcosα}{co{s}^{2}α-si{n}^{2}α}$=$\frac{ta{n}^{2}α-2tanα}{1-ta{n}^{2}α}$
=$\frac{(-3)^{2}-2×(-3)}{1-(-3)^{2}}=-\frac{15}{8}$.
故选:C.

点评 本题考查了三角函数的化简与求值,重点考查了二倍角的正弦公式和余弦公式,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)求出表中的x,y
(2)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>1,f(x)=x2-ax,当x∈(-1,1)时,均有f(x)<$\frac{2}{3}$,则实数a的取值范围是(  )
A.(1,2)B.(1,3]C.(1,$\frac{3}{2}$)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线x2=4y焦点F的直线交抛物线于A,B两点,若|AF|=3,则|BF|的值为(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个棱锥的三视图,则此棱锥的体积为$\frac{8}{3}$,表面积为4$\sqrt{2}$+6+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(2,x),若$\overrightarrow a$∥$\overrightarrow b$,则x=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5π}{2}$-β),则α+β=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是奇函数.
(1)求a,b的值;
(2)判断其单调性并加以证明;
(3)若对任意的t∈[-1,3],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)为偶函数,且f(x)=f(x-4),在区间[0,2]上,f(x)=$\left\{\begin{array}{l}{-{x}^{2}-\frac{3}{2}x+5,0≤x≤1}\\{{2}^{x}+{2}^{-x},a<x≤2}\end{array}\right.$,g(x)=($\frac{1}{2}$)|x|+a,若F(x)=f(x)-g(x)恰好有4个零点,则a的取值范围是(  )
A.(2,$\frac{19}{8}$)B.(2,3)C.(2,$\frac{19}{8}$]D.(2,3]

查看答案和解析>>

同步练习册答案