精英家教网 > 高中数学 > 题目详情

【题目】已知函数的导函数.证明:

1在区间存在唯一极小值点;

2有且仅有个零点.

【答案】1)证明见解析;(2)证明见解析

【解析】

1)令,然后得到,得到的单调性和极值,从而证明在区间存在唯一极小值点;

(2)根据的正负,得到的单调性,结合的值,得到的图像,从而得到的单调性,结合的值,从而判断出有且仅有个零点.

1)令

时,恒成立,

时,.

递增,.

故存在使得,时,.

综上,在区间存在唯一极小值点.

2)由(1)可得

时,单调递减,

时,单调递增.

.

的大致图象如下:

时,

∴此时单调递增,而.

故存在,使得

故在上,的图象如下:

综上,时,时,时,.

递增,在递减,在递增,

又当时,恒成立.

故在的图象如下:

有且仅有个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析span>年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tna11b1=﹣1a2-b22.

1)若a3-b36,求{bn}的通项公式

2)若T3=﹣13,求S5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正四面体ABCD的所有棱长都为1米,有一只蚂蚁从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,则它爬了4米之后恰好位于顶点A的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥底面是菱形,平面分别是的中点.

(1)求证:平面平面

(2),垂足为,斜线与平面所成的角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线经过椭圆的右焦点

1)求实数的值;

2)设直线与椭圆相交于两点,求的值.

查看答案和解析>>

同步练习册答案