精英家教网 > 高中数学 > 题目详情

如图,已知平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

(1)证  (2)证平面 (3)

解析试题分析:(1)证法一:取的中点,连

的中点,∴
平面平面
,∴
,∴.               
∴四边形为平行四边形,则
平面平面
平面.                       
(2)证:∵为等边三角形,的中点,

平面平面,∴
,故平面.                 
,∴平面
平面
∴平面平面.              
(3)解:在平面内,过,连
∵平面平面,∴平面
和平面所成的角.               
,则

R t△中,
∴直线和平面所成角的正弦值为
考点:平面与平面垂直的判定;直线与平面平行的判定;直线与平面所成的角.
点评:本题考查证明线面平行的方法,2个平面垂直的方法,求直线与平面成的角的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,面为正方形,面为等腰梯形,,,,.

(1)求证:;
(2)求三棱锥的体积;
(3)线段上是否存在点,使//平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(1)证明:平面
(2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),是等腰直角三角形,其中分别为的中点,将沿折起,点的位置变为点,已知点在平面上的射影的中点,如图(2)所示.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

边长为2的正方形ABCD所在平面外有一点P,平面ABCD,,E是PC上的一点.
 
(Ⅰ)求证:AB//平面
(Ⅱ)求证:平面平面
(Ⅲ)线段为多长时,平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

同步练习册答案