精英家教网 > 高中数学 > 题目详情

【题目】下列有关结论正确的个数为( )

①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件=“4个人去的景点不相同”,事件 “小赵独自去一个景点”,则

②设函数存在导数且满足,则曲线在点处的切线斜率为-1;

③设随机变量服从正态分布,若,则的值分别为

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】①小赵独自去一个景点,则有3个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为3×3×3=27种.

所以小赵独自去一个景点的可能性为4×27=108种

因为4个人去的景点不相同的可能性为4×3×2×1=24种,

所以,正确;

②根据导数的定义及导数的几何意义知正确;

③随机变量服从正态分布

所以 ,正确.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,
(1)若函数f(x)是偶函数,求实数b的值
(2)若函数f(x)在区间[﹣1,3]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[7,15),设f(2x+1)的定义域为A,B={x|x<a或x>a+1},若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

1)当时,求函数的单调递增区间;

2)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数类对称点,当时,试问是否存在类对称点,若存在,请至少求出一个类对称点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)=﹣x2﹣3,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[﹣1,2]时,f(x)的最小值为1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e|x|+|x|,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中a≠0,q:实数x满足.

(I)若a=1,且p∧q为真,求实数x的取值范围.

(II)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)当x∈(0,+∞)时,求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案