精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求二面角大小的正弦值.

【答案】(1)详见解析;(2).

【解析】

(1)先证,取的中点为,连接,再证,从而得四边形为平行四边形,从而得证;

(2)易知平面,所以为坐标原点,所在射线为轴建立空间直角坐标系,分别求平面的法向量和平面的法向量,利用即可得解.

(1)证明:过.

因为,所以

因为,所以

因为,所以

所以四边形为矩形,所以

的中点为,连接.

因为的中点,所以

所以,所以四边形为平行四边形,

所以,因为平面平面.

所以平面.

(2)因为平面平面,所以平面.

为坐标原点,所在射线为轴建立空间直角坐标系.

因为,所以

,所以

因为,所以

,所以,设平面的法向量为

所以.

,所以

设平面的法向量为

所以

设平面与平面所成角为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台有一档益智答题类综艺节日,每期节目从现场编号为018080名观众中随机抽取10人答题.答题选手要从科技文艺两类题目中选一类作答,一共回答10个问题,答对1题得1.

1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.

1622779439 4954435482 1737932378 873509643 8426349164

8442175331 5724550688 7704744767 2176335025 8392120676

2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.

3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,函数定义于并取值于.(用数字作答)

1)若对于任意的成立,则这样的函数_______个;

2)若至少存在一个,使,则这样的函数____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,且Sn=2an﹣2(nN*),数列{bn}满足bn=(2n﹣1)an,数列{bn}的前n项和Tn(nN*),

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和Tn

(3)求 的最小值以及取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)已知函数的图象在公共点(x0y0)处有相同的切线,

(i)求证:处的导数等于0;

(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业针对改善员工福利的三种方案进行了问卷调查,调查结果如下:

支持方案

支持方案

支持方案

35岁以下的人数

200

400

800

35岁及以上的人数

100

100

400

1)从所有参与调查的人中,用分层随机抽样的方法抽取人,已知从支持方案的人中抽取了6人,求的值.

2)从支持方案的人中,用分层随机抽样的方法抽取5人,这5人中年龄在35岁及以上的人数是多少?年龄在35岁以下的人数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的一个焦点恰好与抛物线的焦点重合,且两曲线的一个交点为,若,则双曲线的方程为(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案