精英家教网 > 高中数学 > 题目详情
sin
2
+n cos
2
+p cos(-5π)+q tan
13π
4
=
 
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:利用三角函数的诱导公式化简三角函数式.
解答: 解:原式=sin(3π+
π
2
)+cos(2π+
π
2
)+cos5π+tan(3π+
π
4

=-1+0-1+1
=-1.
故答案为:-1.
点评:本题考查了利用三角函数的诱导公式化简三角函数式;熟记公式是关键.口诀:奇变偶不变,符号看象限.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为(  )
A、3000元
B、3100元
C、3300元
D、3500元

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向里
a
=(x,-3),
b
=(-2,1),
c
=(1,y),若
a
⊥(
b
-
c
),
b
∥(
a
+
c
),则
a
b
方向的投影为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列通项公式
(1)1,
1
2
,3,
1
4

(2)0,
22-2
5
32-3
10
42-4
17

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=-2cos(x-
π
3
)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

对下面四个命题:
①若A、B、U为集合,A⊆U,B⊆U,A∩B=A,则∁UA⊆∁UB;
②二项式(2x-
1
x2
6的展开式中,其常数项是240;
③对直线l、m,平面α、β,若l∥α,l∥β,α∩β=m,则l∥m;
④函数y=(x+1)2+1,(x≥0)与函数y=-1+
x-1
,(x≥1)互为反函数.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA垂直底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(1)求证:AM∥平面SCD;
(2)设点N是CD上的中点,求三棱锥N-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和Sn,n∈N*,且点(2,a2),(a7,S3)均在直线x-y+1=0上
(Ⅰ)求数列{an}的通项公式an的前n项和Sn
(Ⅱ)设bn=
2
2Sn-n
,Tn=2b1•2b2•…•2bn,试比较Tn
48
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln
kx-1
x+1
(k>0)为奇函数.
(I)求常数k的值;
(Ⅱ)求证:函数f(x)在(-∞,-1)上是增函数;
(Ⅲ)若函数g(x)=f(x)+2x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案