(1)若x=a+(t2-3)b与y=-ka+tb垂直,求k关于t的函数关系式k=f(t);
(2)试确定k=f(t)的单调区间.
解:(1)由题意,a⊥b,
∴a·b=0.
又x⊥y,∴x·y=0,
即[a+(t2-3)b]·(-ka+tb)=0.
∴-ka2+[t-k(t2-3)]a·b+t(t2-3)b2=0.
由于a2=|a|2=4,b2=|b|2=1,∴4k=t(t2-3),即k=t(t2-3)=(t3-3t).
(2)设t1<t2,则f(t1)-f(t2)=[(t13-t23)-3(t1-t2)]=(t1-t2)(t12+t22+t1t2-3).
①当t1<t2≤-1时,t1t2>1,t12>1,t22≥1,即t12+t22+t1t2-3>0,而t1-t2<0,故f(t1)<f(t2),即(-∞,-1]为k=f(t)的单调增区间.
②当1≤t1<t2时,t1t2>1,t12≥1,t22>1,即t12+t22+t1t2-3>0,而t1-t2<0,故f(t1)<f(t2),即[1,+∞)为k=f(t)的单调增区间.
③当-1<t1<t2<1时,t12<1,t22<1,t1t2<1,则t12+t22+t1t2-3<0,而t1-t2<0,∴f(t1)>f(t2),即(-1,1)为k=f(t)的单调减区间.
综合①②③,知k=f(t)的单调减区间为(-1,1),单调增区间为(-∞,-1],[1,+∞).
科目:高中数学 来源: 题型:044
设平面内两向量
a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.(1)
若x=a+(t-3)b与y=-ka+b垂直,求k关于t的函数关系式k=f(t);(2)
求函数k=f(t)的最小值.查看答案和解析>>
科目:高中数学 来源:数学教研室 题型:044
设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.
(1)若x=a+(t-3)与y=-ka+tb垂直,求k关于t的函数关系式k=f(t);
(2)求函数k=f(t)的最小值.
查看答案和解析>>
科目:高中数学 来源:数学教研室 题型:044
设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.
(1)若x=a+(t-3)b与y=-ka+b垂直,求k关于t的函数关系式k=f(t);
(2)求函数k=f(t)的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com