精英家教网 > 高中数学 > 题目详情
2.已知$\frac{z-1}{z+1}$为纯虚数,且(z+1)($\overline{z}$+1)=|z|2,求复数z.

分析 设$\frac{z-1}{z+1}$=mi(m∈R且m≠0),求出复数z,代入(z+1)($\overline{z}$+1)=|z|2求得m的值,则复数z可求.

解答 解:设$\frac{z-1}{z+1}$=mi(m∈R且m≠0),则$z=\frac{1-{m}^{2}}{1+{m}^{2}}+\frac{2mi}{1+{m}^{2}}$,
又(z+1)($\overline{z}$+1)=|z|2,得$|z{|}^{2}+z+\overline{z}+1=|z{|}^{2}$,
∴z+$\overline{z}=1$,即$\frac{2-2{m}^{2}}{1+{m}^{2}}=1$,解得:$m=±\frac{\sqrt{3}}{3}$.
当m=$\frac{\sqrt{3}}{3}$时,$z=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}+\frac{\frac{2\sqrt{3}}{3}i}{\frac{4}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2}i$;
当m=$-\frac{\sqrt{3}}{3}$时,$z=\frac{1}{2}-\frac{\sqrt{3}}{2}i$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知四面体ABCD,下列命题:
①若AB⊥CD,则AC⊥BD;
②若AC=BC=AD=BD,则AB⊥CD;
③若点E,F分别在BC,BD上,且CD∥平面AEF,则EF是△BCD的中位线;
④若E是CD中点,则CD⊥平面ABE;
⑤在棱AB上任取一点P,使三棱锥P-BCD的体积与四面体ABCD的体积比大于$\frac{1}{3}$的概率为$\frac{2}{3}$.
其中正确的命题的序号是②⑤(填写所有真命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O做PT的平行线交PF1于点M,若|MP|=$\frac{1}{3}$|F1F2|,则C的离心率为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线y=$\frac{1}{2}$x+m经过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左焦点F,交y轴于点P,c为双曲线的半焦距,O为坐标原点,若|OP|,2a,|OF|成等比数列,求此双曲线的离心率和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若p>0,q>0,p3+q3=2,求证:p+q≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+n}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn≥$\frac{m}{7}$对所有n∈N*都成立的最大正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,过双曲线的右焦点F分别作两条渐近线的垂线,垂足为M、N,若$\overrightarrow{FM}$•$\overrightarrow{FN}$<0,则此双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.(1,2)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点F1,F2为双曲线C:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线于点M,且∠MF1F2=30°,圆O的方程为x2+y2=b2
(1)求双曲线C的方程;
(2)过圆O上任意一点Q(x0,y0)作切线l交双曲线C于A,B两个不同点,AB中点为N,求证|$\overrightarrow{AB}$|=2|$\overrightarrow{ON}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方形ABCD-A1B1C1D1中,
(1)求异面直线AD1与BD所成角的大小;
(2)求二面角D1-CB-D的大小.

查看答案和解析>>

同步练习册答案