解:(Ⅰ)依据题意,当S=(-1,3)时,C(A,S)取得最大值为2.
(Ⅱ)①当0是S中的“元”时,由于A的三个“元”都相等,及B中a,b,c三个“元”的对称性,可以只计算
的最大值,其中a
2+b
2+c
2=1.
由(a+b)
2=a
2+b
2+2ab≤2(a
2+b
2)≤2(a
2+b
2+c
2)=2,
得
.
当且仅当c=0,且
时,a+b达到最大值
,
于是
.
②当0不是S中的“元”时,计算
的最大值,
由于a
2+b
2+c
2=1,
所以(a+b+c)
2=a
2+b
2+c
2+2ab+2ac+2bc≤3(a
2+b
2+c
2)=3,
当且仅当a=b=c时,等号成立.
即当
时,a+b+c取得最大值
,此时
.
综上所述,C(A,S)的最大值为1.
分析:(Ⅰ)依据题意中“元”的含义,可知当S=(-1,3)时,C(A,S)取得最大值为2.
(Ⅱ)对0是不是S中的“元”进行分类讨论:①当0是S中的“元”时,由于A的三个“元”都相等,及B中a,b,c三个“元”的对称性,利用平均值不等式计算
的最大值,②当0不是S中的“元”时,只须计算
的最大值即可,最后综上即可得出C(A,S)的最大值.
点评:本小题主要考查排序不等式及应用、平均值不等式在函数极值中的应用等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.