精英家教网 > 高中数学 > 题目详情

【题目】(A)在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为 (为参数), 是曲线上的动点, 为线段的中点,设点的轨迹为曲线.

(1)求的坐标方程;

(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.

【答案】解:(1) .(2) .

【解析】试题分析:(1先设出点的参数方程,化为直角坐标方程,将 所以曲线后得到极坐标方程;2根据(1)将求出曲线的极坐标方程分别求出射线的交点的极径为以及射线的交点的极径为,最后根据即可的结果.

试题解析:(1)设,则由条件知,由于点在曲线上,

所以,即

从而的参数方程为 (为参数),

化为普通方程

所以曲线后得到

极坐标方程为.

(2)曲线的极坐标方程为

时,代入曲线的极坐标方程,得

,解得

所以射线的交点的极径为

曲线的极坐标方程为.

同理可得射线的交点的极径为.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程是,圆的参数方程是为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线和圆的极坐标方程;

(2)射线(其中)与圆交于两点,与直线交于点,射线与圆交于两点,与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的极值;

(2)当时,若直线 与曲线没有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数.

(1)求解不等式的解集;

(2)若函数的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四个命题:

①在回归分析中, 可以用来刻画回归效果, 的值越大,模型的拟合效果越好;

②在独立性检验中,随机变量的值越大,说明两个分类变量有关系的可能性越大;

③在回归方程中,当解释变量每增加1个单位时,预报变量平均增加1个单位;

④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;

其中真命题是:

A. ①④ B. ②④ C. ①② D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只通过两道程序的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者 和4名 ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.

(Ⅰ)求接受甲种心理暗示的志愿者中包含但不包含的频率.

(Ⅱ)用表示接受乙种心理暗示的女志愿者人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.

(Ⅰ)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是偶数的概率;

(Ⅱ)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了次才停止取出卡片,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案