【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )
A. 平均数为14,方差为5 B. 平均数为13,方差为25
C. 平均数为13,方差为5 D. 平均数为14,方差为2
【答案】C
【解析】
根据平均数和方差的定义和性质进行求解即可.
∵样本1+x1,1+x2,1+x3,…,1+xn的平均数是12,方差为5,
∴1+x1+1+x2+1+x3+…+1+xn=12n,
即x1+x2+x3+…+xn=12n﹣n=11n,
方差S2=[(1+x1﹣12)2+(1+x2﹣12)2+…+(1+xn﹣12)2]=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,
则(2+x1+2+x2+…+2+xn)==13,
样本2+x1,2+x2,…,2+xn的方差S2=[(2+x1﹣13)2+(2+x2﹣13)2+…+(2+xn﹣13)2]
=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,
故选:C.
科目:高中数学 来源: 题型:
【题目】若命题p:函数y=x2﹣2x的单调递增区间是[1,+∞),命题q:函数y=x﹣ 的单调递增区间是[1,+∞),则( )
A.p∧q是真命题
B.p∨q是假命题
C.非p是真命题
D.非q是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式的解集为(1,t),记函数.
(1)求证:函数y=f(x)必有两个不同的零点;
(2)若函数y=f(x)的两个零点分别为,,试将表示成以为自变量的函数,并求的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)= .
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的一元二次方程,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数a,b∈{1,2,3,4,5,6};
(2)若a是从区间[0,5]中任取的一个数,b是从区间[2,4]中任取的一个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,
,≈2.646.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,则该算法的功能是( )
A.计算数列{2n﹣1}前5项的和
B.计算数列{2n﹣1}前5项的和
C.计算数列{2n﹣1}前6项的和
D.计算数列{2n﹣1}前6项的和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3﹣3x2+1(a>0),定义h(x)=max{f(x),g(x)}= .
(1)求函数f(x)的极值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求实数a的取值范围;
(3)若g(x)=lnx,试讨论函数h(x)(x>0)的零点个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com