精英家教网 > 高中数学 > 题目详情

【题目】对任意m∈R,直线mx﹣y+1=0与圆x2+y2=r2(r>0)交于不同的两点A、B,且存在m使| + |≥| |(O是坐标原点)成立,那么r的取值范围是(
A.0<r≤
B.1<r<
C.1<r≤
D.r>

【答案】C
【解析】解:将直线方程代入圆的方程得:(m2+1)x2+2mx+1﹣r2=0,
△=4m2﹣4(m2+1)(1﹣r2)>0得r2 恒成立,即r>1.
设点A(x1 , y1),B(x2 , y2),则x1+x2= ,x1x2=
| + |≥| |即| + |≥| |,平方得 ≥0,即x1x2+y1y2≥0,
即x1x2+(mx1+1)(mx2+1)≥0,即(1+m2)x1x2+m(x1+x2)+1≥0,
即r2 有解,即r2≤2,即r≤
综合知:1<r≤
故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)当a=1时,解不等式f(x)≥g(x);
(2)记函数f(x)在区间[0,2]上的最大值为F(a),求F(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1aSn是数列{an}的前n项和,且满足: 3n2anan≠0n≥2nN*

(1)若数列{an}是等差数列,求a的值;

(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,若输出的结果为 ,则判断框内可以填(

A.k>98?
B.k≥99?
C.k≥100?
D.k>101?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)若A,B为曲线C1 , C2的公共点,求直线AB的斜率;
(2)若A,B分别为曲线C1 , C2上的动点,当|AB|取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为14已知定义域为R的函数是奇函数

1求a,b的值;

2若对任意的tR,不等式ft2-2t+f2t2-k<0恒成立,求k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的是(
A.已知f(x)=sin2x+ ,则f(x)的最小值是2
B.已知数列{an}的通项公式为an=n+ ,则{an}的最小项为2
C.已知实数x,y满足x+y=2,则xy的最大值是1
D.已知实数x,y满足xy=1,则x+y的最小值是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,直线y=x﹣8与此抛物线交于A、B两点,与x轴交于点C,O为坐标原点,若 =3
(1)求此抛物线的方程;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)当b=3﹣a时,对任意的x∈(﹣1,0]都有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案