精英家教网 > 高中数学 > 题目详情

【题目】对于各项均为正数的无穷数列,记,给出下列定义:

①若存在实数,使成立,则称数列为“有上界数列”;

②若数列为有上界数列,且存在,使成立,则称数列为“有最大值数列”;

③若,则称数列为“比减小数列”.

1)根据上述定义,判断数列是何种数列?

2)若数列中,,求证:数列既是有上界数列又是比减小数列;

3)若数列是单调递增数列,且是有上界数列,但不是有最大值数列,求证:

【答案】(1)既是有上界数列,又是有最大值数列;(2)证明见解析;(3)证明见解析.

【解析】

1)由,得,由此得到数列既是有上界数列,又是有最大值数列.

2)先用数学归纳法证明,再证明.然后证明,由此得到数列既是比减少数列又是有上界数列.

3)假设对于,由此推导出无穷数列不是有上界数列,与已知矛盾,假设不成立,从而得到对于数列

解:(1)由题意知

,且存在

所以数列既是有上界数列,又是有最大值数列.

2)数列中,

下面用数学归纳法证明

,命题;

②假设时命题成立,即

时,

所以,当时,命题成立,即

下面证明

因为,所以,即

两式相除得:

所以

下面证明

即需证明,即需证明

已证明成立,

所以

所以,数列既是比减少数列又是有上界数列.

3)用反证法,假设对于

因为无穷数列各项为正且单调递增,所以

所以.当时,

,所以无穷数列不是有上界数列,与已知矛盾,假设不成立,

因此,对于数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,都有成立,求的取值范围;

(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,他从单位圆内接正六边形算起,令边数一倍一倍地增加,即122448192,逐个算出正六边形,正十二边形,正二十四边形,,正一百九十二边形,的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想极其重要,对后世产生了巨大影响.按照上面“割圆术”,用正二十四边形来估算圆周率,则的近似值是( )(精确到.(参考数据

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个条件中任选一个补充在下面问题中,并加以解答.

已知的内角ABC的对边分别为abc,若______,求的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg f(1)=0,当x>0时,恒有f(x)=lgx.

(1)若不等式f(x)≤lgt的解集为A,且A(0,4],求实数t的取值范围;

(2)若方程f(x)=lg(8x+m)的解集为,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.恒成立,则当取得最小值时,的值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,二面角是直二面角,

(1)求证:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形是等腰梯形,的中点.沿折起,如图2,点是棱上的点.

1)若的中点,证明:平面平面

2)若,试确定的位置,使二面角的余弦值等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191118日国际射联步手枪世界杯总决赛在莆田市综合体育馆开幕,这是国际射联步手枪世界杯总决赛时隔10年再度走进中国.为了增强趣味性,并实时播报现场赛况,我校现场小记者李明和播报小记者王华设计了一套播报转码法,发送方由明文密文(加密),接受方由密文明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的26个字母(不论大小写)依次对应1232626个自然数通过变换公式:,将明文转换成密文,如,即变换成,即变换成.若按上述规定,若王华收到的密文是,那么原来的明文是(

A.B.C.D.

查看答案和解析>>

同步练习册答案