精英家教网 > 高中数学 > 题目详情
已知角α满足
(1)求tanα的值;       
(2)求sin2α+2cos2α-sinαcosα的值.
【答案】分析:(1)在已知等式的左边分子分母同时除以cosα,利用同角三角函数基本关系弦化切后,得到关于tanα的方程,解方程可求出tanα的值;
(2)把所求式子的分母“1”变形为sin2α+cos2α,然后分子分母同时除以cos2α,利用同角三角函数的基本关系化为关于tanα的式子,把上一问求出的tanα的值代入即可求出值.
解答:解:(1)∵(4分)(4分)
点评:本题考查三角函数的化简求值,及同角三角函数间的基本关系,本题解题的关键是根据sin2α+cos2α=1,把分母1化成角的正弦与余弦的平方和,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
sin(
π
2
+
x
2
)

(1)求函数f(x)在[-π,0]上的单调区间;
(2)已知角α满足α∈(0,
π
2
)
2f(2α)+4f(
π
2
-2α)=1
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α满足
sinα+cosα2sinα-cosα
=2

(1)求tanα的值;       
(2)求sin2α+2cos2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角满足

(1)求的值;       (2)求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角α满足数学公式
(1)求tanα的值;   
(2)求sin2α+2cos2α-sinαcosα的值.

查看答案和解析>>

同步练习册答案