精英家教网 > 高中数学 > 题目详情

【题目】社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答但是被采访者常常不愿意如实做出应答.

1965Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个而不必告诉采访者回答的是哪个问题两个问题中有一个是敏感的或者是令人为难的另一个是无关紧要的这样应答者将乐意如实地回答问题因为只有他知道自己回答的是哪个问题.

假如在调查运动员服用兴奋剂情况的时候无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币如果出现正面就回答第一个问题否则回答第二个问题.

例如我们把这个方法用于200个被调查的运动员得到56的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.

【答案】6%

【解析】试题分析:根据抛掷硬币出现正面的概率为,身份证的末尾是奇数或偶数的概率也是,用这种方法用于个运动员,可得个运动员回答“是”,可得这人中有人回答“是”的运动中使用了兴奋剂,根据古典概率及概率的计算公式,即可求解.

试题解析:

解:因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,因为身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的100人中大约有一半人,即50人回答了,其余6个回答的人服用过兴奋剂,由此我们估计这群人中大约有6%的人服用过兴奋剂.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017届广东省深圳市高三下学期第一次调研考试(一模)数学理】已知函数为自然对数的底数.

(1)求曲线处的切线方程;

(2)关于的不等式上恒成立,求实数的值;

(3)关于的方程有两个实根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限 (单位:年)与所支出的总费用 (单位:万元)有如下的数据资料:

使用年限

2

3

4

5

6

总费用

2.2

3.8

5.5

6.5

7.0

若由资料知呈线性相关关系.

(1)试求线性回归方程= +的回归系数,

(2)当使用年限为年时,估计车的使用总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级, 为优; 为良; 为轻度污染; 为中度污染; 为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的的茎叶图如下:

(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)

(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;

(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片森林原面积为.计划从某年开始,每年砍伐一些树林,且每年砍伐面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

(3)为保护生态环境,今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.(a>0)

(1)若a=1,证明:y=f(x)在R上单调递减;

(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数同时满足:对于定义域上的任意,恒有对于定义域上的任意 时,恒有,则称函数为“理想函数”.在下列三个函数中:(1);(2);(3).“理想函数”有__________.(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为正整数,数列满足,设数列满足.

(1)求证:数列为等比数列;

(2)若数列是等差数列,求实数的值;

(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.

查看答案和解析>>

同步练习册答案