精英家教网 > 高中数学 > 题目详情

若向量a与向量b满足|a|=1,|b|=,且a⊥(a-b),则a与b的夹角是

(  )

(A)30°     (B)45°    (C)90°   (D)135°

B.由a⊥(a-b)得a·(a-b)=0,

∴a2=a·b.设a与b的夹角为θ,则cosθ=


∴θ=45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的有(  )
①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则m∥n的充要条件是λ1•μ22•μ1=0;
③若
OA 
+
OB
+
OC 
=0
,且|
OA 
|=|
OB
|=|
OC 
|
,则△ABC是等边三角形;
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A、②③④B、①②③C、①④D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)下列命题中真命题的编号是
②③
②③
.(填上所有正确的编号)
①向量
a
与向量
b
共线,则存在实数λ使
a
b
(λ∈R);
a
b
为单位向量,其夹角为θ,若|
a
-
b
|>1,则
π
3
<θ≤π;
③A、B、C、D是空间不共面的四点,若
AB
AC
=0,
AC
AD
=0,
AB
AD
=0则△BCD 一定是锐角三角形;
④向量
AB
AC
BC
满足
AB
=
AC
+
BC
,则
AC
BC
同向;
⑤若向量
a
b
b
c
,则
a
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知向量
满足条件:
≠0
.若对于任意实数t,恒有|
-t
|≥|
-
|
,则在
+
-
这四个向量中,一定具有垂直关系的两个向量是(  )

查看答案和解析>>

科目:高中数学 来源:吉林省实验中学2008届高三年级第三次模拟考试数学(文) 题型:022

若向量a与满足b满足|a|=|b|=1,ab的夹角为120°,则a·a+a·b=________.

查看答案和解析>>

同步练习册答案