【题目】已知过点P(4,0)的动直线与抛物线C:交于点A,B,且(点O为坐标原点).
(1)求抛物线C的方程;
(2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQ,BQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.
【答案】(1)=;(2)轴上存在点,使得点到直线,的距离相等.
【解析】
(1)设过点的动直线为=,联立抛物线的方程,设,,运用韦达定理,结合向量的数量积的坐标表示,化简可得,进而得到抛物线方程;
(2)轴上假设存在点符合题意,由题意可得=,运用直线的斜率公式和韦达定理,化简可得的值,即可判断存在性.
(1)设过点的动直线为=,
代入抛物线=,可得=,
设,,
可得=,
由可得==,
解得=,则抛物线的方程为=;
(2)当直线变动时,轴上假设存在点使得点到直线,的距离相等,
由角平分线的判定定理可得为的角平分线,即有=,
由(1)可得=,=,
则,
化为=,
即为=,
化简可得=,
则轴上存在点,使得点到直线,的距离相等.
科目:高中数学 来源: 题型:
【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.
喜爱数学课 | 不喜爱数学课 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有的把握认为“喜爱数学课与性别”有关;
(2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“男生”的概率.
参考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点到点的距离为.
(1)求抛物线的方程;
(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为(t为参数),直线l与曲线C交于M,N两点.
(1)若点P的极坐标为(2,π),求|PM||PN|的值;
(2)求曲线C的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+a2+…+an=an+1﹣2.
(1)若a1=2,求数列{an}的通项公式;
(2)若数列1,a2,a4,b1,b2,…bn,…成等差数列,求数列{bn}的前n项和为Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )
A.高一年级得分中位数小于高二年级得分中位数
B.高一年级得分方差大于高二年级得分方差
C.高一年级得分平均数等于高二年级得分平均数
D.高一年级班级得分最低为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】保护环境就是保护人类健康.空气中负离子浓度(单位:个/)可以作为衡量空气质量的一个指标,也对人的健康有一定的影响.根据我国部分省市区气象部门公布的数据,目前对空气负离子浓度的等级标准如下表.
表负离子浓度与空气质量对应标准:
负离子浓度 | 等级 | 和健康的关系 |
级 | 不利 | |
级 | 正常 | |
级 | 较有利 | |
级 | 有利 | |
级 | 相当有利 | |
级 | 很有利 | |
级 | 极有利 |
图空气负离子浓度
某地连续天监测了该地空气负离子浓度,并绘制了如图所示的折线图.根据折线图,下列说法错误的是( )
A.这天的空气负离子浓度总体越来越高
B.这天中空气负离子浓度的中位数约个
C.后天的空气质量对身体健康的有利程度明显好于前天
D.前天空气质量波动程度小于后天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:
①它的图象关于直线x=对称;
②它的最小正周期为;
③它的图象关于点(,1)对称;
④它在[]上单调递增.
其中所有正确结论的编号是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com