精英家教网 > 高中数学 > 题目详情

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

【答案】C

【解析】

利用诱导公式、函数yAsin(ωx)的图象变换规律,正弦函数、余弦函数的图象的对称性,判断各个选项是否正确,从而得出结论.

将函数图象上所有点的横坐标缩短为原来的

可得y=2sin(2x)的图象

然后纵坐标不变,再向右平移个单位长度,

得到函数ygx)=2sin(2x)=2cos2x的图象

x,求得gx)=0,

可得(,0)是gx)的一个对称中心,故排除A

x,求得gx)=﹣1,

可得xgx)的图象的一条对称轴,故排除B,故C正确;

x,求得gx,可得x不是gx)的图象的对称中心,故排除D

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式.

(1)是否存在实数m,使不等式对任意恒成立?并说明理由.

(2)若不等式对任意恒成立,求实数m的取值范围.

(3)若对于,不等式恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,直线平面,且.

1)求二面角的大小;

2)设E为棱的中点,在的内部或边上是否存在一点,使平面?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上一点P的坐标为.

1)求椭圆M的方程;

2)设椭圆的右顶点为C,不经过点C的直线l与椭圆M交于AB两点,且以线段AB为直径的圆过点C

①证明:直线l过定点,并求出该定点坐标;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四面体中,是边长为2的等边三角形,为直角三角形,其中为直角顶点,.分别是线段上的动点,且四边形为平行四边形.

1)求证:平面平面

2)试探究当二面角增加到90°的过程中,线段在平面上的投影所扫过的平面区域的面积;

3)设,且为等腰三角形,当为何值时,多面体的体积恰好为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:

(I)时,求的最小值;

(II)对于任意的都存在唯一的使得,求实数a的取值范围.

查看答案和解析>>

同步练习册答案