精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的通项公式为an=25n , 数列{bn}的通项公式为bn=n+k,设cn= 若在数列{cn}中,c5≤cn对任意n∈N*恒成立,则实数k的取值范围是

【答案】[﹣5,﹣3]
【解析】解:若c5=a5 , 则a5>b5 , 则前面不会有bn的项,
∵{bn}递增,{an}递减,∴bi(i=1,2,3,4)<b5<a5<ai(i=1,2,3,4),
∵an递减,∴当n≥6时,必有cn≠an , 即cn=bn
此时应有b6≥a5 , ∴a5>b5 , 即20>5+k,得k<﹣4,
b6≥a5 , 即6+k≥1,得k≥﹣5,
∴﹣5≤k<﹣4.
若c5=b5 , 则b5≥a5 , 同理,前面不能有bn项,
即a4≥b5>b4 , 当n≥6时,∵{bn}递增,{an}递减,
∴bn>b5≥a5>an(n≥6),
∴当n≥6时,cn=bn . 由b5≥a5 , 即5+k≥1,得,k≥﹣4,
由a4≥b5 , 得2≥5+k,得k≤﹣3,即﹣4≤k≤﹣3.
综上得,﹣5≤k≤﹣3.
∴实数k的取值范围是[﹣5,﹣3].
所以答案是:[﹣5,﹣3].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其中a1=25,a4=16
(1)求{an}的通项;
(2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)求三棱锥的体积;

(2)求证:面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中, , , 平面平面.

(1)证明:直线平面

(2)已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x|x﹣a|+2x.
(1)若a=3,求函数f(x)在区间[0,4]上的最大值;
(2)若存在a∈(2,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求证:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2x﹣y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x﹣4y=0相切,则实数λ的值为(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线的方程

(2)若不等式 对任意恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知an=logn+1(n+2)(n∈N*).我们把使乘积a1a2a3…an为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(
A.1024
B.2003
C.2026
D.2048

查看答案和解析>>

同步练习册答案