精英家教网 > 高中数学 > 题目详情
C.(选修4-4:坐标系与参数方程)
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0 上的动点,B为直线ρcosθ+ρsinθ-7=0 上的动点,求AB 的最小值.
【答案】分析:化极坐标方程为直角坐标方程,然后利用点到直线的距离公式求出圆心到直线的距离,则圆上的动点A到直线上的动点B的最小距离为圆心到直线的距离减去圆的半径.
解答:解:由ρ2+2ρcosθ-3=0,得:x2+y2+2x-3=0,即(x+1)2+y2=4.
所以曲线是以(-1,0)为圆心,以2为半径的圆.
再由ρcosθ+ρsinθ-7=0得:x+y-7=0.
所以圆心到直线的距离为d=
则圆上的动点A到直线上的动点B的最小距离为
点评:本题考查了简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了点到直线的距离公式,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-4:坐标系与参数方程】
在直角坐标系xoy中,直线l的参数方程为
x=3-
2
2
t
y=
5
-
2
2
t
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)选修4-4:坐标系与参数方程
在直角坐标系xoy中,圆C的参数方程为
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ为参数r>0)
以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程ρsin(θ+
π
4
)=
2
2

(I)求圆心的极坐标.
(II)若圆C上点到直线l的最大距离为3,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
(B)(选修4-2:矩阵与变换)
二阶矩阵M有特征值λ=8,其对应的一个特征向量e=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成点(-2,4),求矩阵M2
(C)(选修4-4:坐标系与参数方程)
已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈R).试在曲线C上一点M,使它到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•荆州模拟)请在下面两题中选做一题,如果多做,则按所做的第一题计分.
选修4-1:几何证明选讲
如图,割线PBC经过圆心O,PB=OB=1,圆周上有一点D,满足∠COD=60°,连PD交圆于点E,则PE=
3
7
7
3
7
7

选修4-4:坐标系与参数方程
已知直线l经过点P(1,-1),倾斜角的余弦值为-
4
5
,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,设直线l与圆C交于A,B两点,则弦长|AB|=
7
5
7
5

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在极坐标系中,已知直线l的极坐标方程为ρsin(θ+
π
4
)=1+
2
,圆C的圆心是C(
2
π
4
)
,半径为
2

(1)求圆C的极坐标方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

同步练习册答案