精英家教网 > 高中数学 > 题目详情

【题目】如图,曲线是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地和规划的两块用地(阴影区域)都是矩形,,若以所在直线为轴,为原点,建立如图平面直角坐标系,则曲线的方程为,记,规划的两块用地的面积之和为.(单位:)

(1)求关于的函数

(2)求的最大值.

【答案】(1) .

(2)平方米.

【解析】分析:1)根据所建平面直角坐标系,可得代入的方程即可求得参数从而得到,进而求得的表达式。

2)利用换元法,令

通过求导得关于m的二次函数表达式求出极值点后,根据单调性即可得到最大值

详解:(1)点,所以,得

所以

所以关于的函数关系式为

(2)令,则

所以在区间上单调递增,在区间上单调递减.

所以当时,取得最大值,为平方米.

答:的最大值为平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四面体的顶点和各棱中点共有10个点,在其中任取4个不共面的点,不同的取法有__用数字作答

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为(
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)圆是以为直径的圆,一直线与之相切,并与椭圆交于不同的两点,当且满足时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)求此四棱柱被平面α所分成上下两部分的体积之比;
(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面上, ,| |=| |=1, = + .若| |< ,则| |的取值范围是(
A.(0, ]
B.( ]
C.( ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间(0,1]上任取两个数ab,则函数f(x)=x2axb2无零点的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若 ,则实数a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案