¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©Áîm=1£¬´úÈëÈ·¶¨³öf£¨x£©µÄ½âÎöʽ£¬ÓÉa
1=0£¬a
n+1=f£¨a
n£©£¬Áîn=2¼´¿ÉÇó³öa
2µÄÖµ£¬È»ºóÓÉa
2掙未a
n+1=f£¨a
n£©£¬Áîn=3¼´¿ÉÇó³öa
3µÄÖµ£¬Í¬ÀíµÃµ½a
4掙术
£¨2£©ÓÉ£¨1£©µÄ·½·¨·Ö±ð±íʾ³öa
2£¬a
3¼°a
4£¬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊÁгö¹ØÓÚmµÄ·½³Ì£¬¸ù¾Ým=0µÃµ½ÈýÏΪ0£¬²»ºÏÌâÒ⣬¹Êµ±m²»µÈÓÚ0£¬ËùÒÔµ±m²»Îª0ʱ£¬·½³ÌÁ½±ß³ýÒÔm£¬µÃµ½¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½mµÄÖµ£¬È·¶¨³öÈýÏîµÄÖµ£¬ÓúóÒ»Ïî¼õȥǰһÏî¼´¿ÉÇó³ö¶ÔÓ¦µÄ¹«²îdµÄÖµ£»
£¨3£©ÓÉb
1=1£¬
£¨n¡ÊN*£©£¬¸ù¾Ýf£¨x£©µÄ½âÎöʽ£¬Çó³öb
n+1Óëb
nµÄ¹Øϵʽ£¬´Ó¶øÈ·¶¨³öÕýÊýÊýÁÐ{b
n}ÊÇÒÔ1ΪÊ×Ï࣬2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¸ù¾ÝµÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½±íʾ³öS
n£¬´úÈë²»µÈʽÖм´¿ÉÇó³öÕýÕûÊýnµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©m=1ʱ£¬f£¨x£©=x
2+1£¬ÒòΪa
1=0£¬
ËùÒÔa
2=f£¨a
1£©=f£¨0£©=1£¬a
3=f£¨a
2£©=2£¬a
4=f£¨a
3£©=5£»£¨£¨3·Ö£©£¬Ã¿Çó¶ÔÒ»ÏîµÃ1·Ö£©
£¨2£©f£¨x£©=x
2+m£¬Ôòa
2=m£¬a
3=m
2+m£¬a
4=£¨m
2+m£©
2+m=m
4+2m
3+m
2+m£¬£¨5·Ö£©
Èç¹ûa
2£¬a
3£¬a
4³ÉµÈ²îÊýÁУ¬
Ôòm
2+m-m=£¨m
4+2m
3+m
2+m£©-£¨m
2+m£©£¬m
4+2m
3-m
2=0£¬£¨6·Ö£©
Èôm=0£¬Ôòa
2=a
3=a
4=0£¬²»ºÏÌâÒ⣬
¹Êm¡Ù0£®ËùÒÔ£¬m
2+2m-1=0£¬ËùÒÔ
£®£¨8·Ö£©
µ±
ʱ£¬¹«²îd=a
3-a
2=m
2+m-m=m
2=
£¬£¨9·Ö£©
µ±
ʱ£¬¹«²î
£»£¨10·Ö£©
£¨3£©b
1=1£¬b
n+1=2£¨b
n+m£©-2m=2b
n£¬£¨12·Ö£©
ËùÒÔ{b
n}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
ÔòS
n=2
n-1£¾2010£¬¼´2
n£¾2011£¬½âµÃn£¾10£®£¨15·Ö£©
ËùÒÔ£¬Ê¹S
n£¾2010³ÉÁ¢µÄ×îСÕýÕûÊýnµÄֵΪ11£®£¨16·Ö£©
µãÆÀ£º´ËÌ⿼²éÁËÊýÁеĵÝÍÆʽ£¬µÈ±ÈÊýÁеÄÇ°nÏîºÍ¼°È·¶¨·½·¨£¬ÒÔ¼°µÈ²îÊýÁеÄÐÔÖÊ£®Ñ§ÉúÇómʱעÒâ°Ñm=0ÕâÖÖÇé¿öÉáÈ¥£®