ÒÑÖªº¯Êýf£¨x£©=x2+m£¬ÆäÖÐm¡ÊR£¬¶¨ÒåÊýÁÐ{an}ÈçÏ£ºa1=0£¬an+1=f£¨an£©£¬n¡ÊN*£®
£¨1£©µ±m=1ʱ£¬Çóa2£¬a3£¬a4µÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹a2£¬a3£¬a4¹¹³É¹«²î²»Îª0µÄµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öʵÊýmµÄÖµ£¬²¢Çó³öµÈ²îÊýÁеĹ«²î£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÕýÊýÊýÁÐ{bn}Âú×㣺b1=1£¬£¨n¡ÊN*£©£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇóʹSn£¾2010³ÉÁ¢µÄ×îСÕýÕûÊýnµÄÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Áîm=1£¬´úÈëÈ·¶¨³öf£¨x£©µÄ½âÎöʽ£¬ÓÉa1=0£¬an+1=f£¨an£©£¬Áîn=2¼´¿ÉÇó³öa2µÄÖµ£¬È»ºóÓÉa2µÄÖµ£¬an+1=f£¨an£©£¬Áîn=3¼´¿ÉÇó³öa3µÄÖµ£¬Í¬ÀíµÃµ½a4µÄÖµ£»
£¨2£©ÓÉ£¨1£©µÄ·½·¨·Ö±ð±íʾ³öa2£¬a3¼°a4£¬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊÁгö¹ØÓÚmµÄ·½³Ì£¬¸ù¾Ým=0µÃµ½ÈýÏΪ0£¬²»ºÏÌâÒ⣬¹Êµ±m²»µÈÓÚ0£¬ËùÒÔµ±m²»Îª0ʱ£¬·½³ÌÁ½±ß³ýÒÔm£¬µÃµ½¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½mµÄÖµ£¬È·¶¨³öÈýÏîµÄÖµ£¬ÓúóÒ»Ïî¼õȥǰһÏî¼´¿ÉÇó³ö¶ÔÓ¦µÄ¹«²îdµÄÖµ£»
£¨3£©ÓÉb1=1£¬£¨n¡ÊN*£©£¬¸ù¾Ýf£¨x£©µÄ½âÎöʽ£¬Çó³öbn+1ÓëbnµÄ¹Øϵʽ£¬´Ó¶øÈ·¶¨³öÕýÊýÊýÁÐ{bn}ÊÇÒÔ1ΪÊ×Ï࣬2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¸ù¾ÝµÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½±íʾ³öSn£¬´úÈë²»µÈʽÖм´¿ÉÇó³öÕýÕûÊýnµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©m=1ʱ£¬f£¨x£©=x2+1£¬ÒòΪa1=0£¬
ËùÒÔa2=f£¨a1£©=f£¨0£©=1£¬a3=f£¨a2£©=2£¬a4=f£¨a3£©=5£»£¨£¨3·Ö£©£¬Ã¿Çó¶ÔÒ»ÏîµÃ1·Ö£©
£¨2£©f£¨x£©=x2+m£¬Ôòa2=m£¬a3=m2+m£¬a4=£¨m2+m£©2+m=m4+2m3+m2+m£¬£¨5·Ö£©
Èç¹ûa2£¬a3£¬a4³ÉµÈ²îÊýÁУ¬
Ôòm2+m-m=£¨m4+2m3+m2+m£©-£¨m2+m£©£¬m4+2m3-m2=0£¬£¨6·Ö£©
Èôm=0£¬Ôòa2=a3=a4=0£¬²»ºÏÌâÒ⣬
¹Êm¡Ù0£®ËùÒÔ£¬m2+2m-1=0£¬ËùÒÔ£®£¨8·Ö£©
µ±Ê±£¬¹«²îd=a3-a2=m2+m-m=m2=£¬£¨9·Ö£©
µ±Ê±£¬¹«²î£»£¨10·Ö£©
£¨3£©b1=1£¬bn+1=2£¨bn+m£©-2m=2bn£¬£¨12·Ö£©
ËùÒÔ{bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
ÔòSn=2n-1£¾2010£¬¼´2n£¾2011£¬½âµÃn£¾10£®£¨15·Ö£©
ËùÒÔ£¬Ê¹Sn£¾2010³ÉÁ¢µÄ×îСÕýÕûÊýnµÄֵΪ11£®£¨16·Ö£©
µãÆÀ£º´ËÌ⿼²éÁËÊýÁеĵÝÍÆʽ£¬µÈ±ÈÊýÁеÄÇ°nÏîºÍ¼°È·¶¨·½·¨£¬ÒÔ¼°µÈ²îÊýÁеÄÐÔÖÊ£®Ñ§ÉúÇómʱעÒâ°Ñm=0ÕâÖÖÇé¿öÉáÈ¥£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸