【题目】如图(1),等腰梯形,,,,,分别是的两个三等分点,若把等腰梯形沿虚线、折起,使得点和点重合,记为点, 如图(2).
(1)求证:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)推导出,,从而面,由此能证明平面平面;
(2)过点作于,过点作的平行线交于点,则面,以为原点,以,,所在直线分别为轴、轴、轴建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值.
(1)证明:四边形为等腰梯形,,,,,是 的两个三等分点,
四边形是正方形,,
,且,面,
又平面,平面平面;
(2)过点作于点,过点作的平行线交于点,则面,
以为坐标原点,以,,所在直线分别为轴、轴、轴建立空间直角坐标系,如图所示:
则,,,,
,,,,
设平面的法向量,
则,取,得,
设平面的法向量,
则,∴,取,得:,
设平面与平面所成锐二面角为,
则.
平面与平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆,、分别是椭圆短轴的上下两个端点;是椭圆的左焦点,P是椭圆上异于点、的点,是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)设点R满足:,.求证:与的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的上、下焦点分别为,,右顶点为B,且满足
Ⅰ求椭圆的离心率e;
Ⅱ设P为椭圆上异于顶点的点,以线段PB为直径的圆经过点,问是否存在过的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二阶方矩阵,则矩阵所对应的矩阵变换为:,其意义是把点变换为点,矩阵叫做变换矩阵.
(1)当变换矩阵时,点、经矩阵变换后得到点分别是、,求经过点、的直线的点方向式方程;
(2)当变换矩阵时,若直线上的任意点经矩阵变换后得到的点仍在该直线上,求直线的方程;
(3)若点经过矩阵变换后得到点,且与关于直线对称,求变换矩阵.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度(单位:cm)的情况如表1:
900 | 700 | 300 | 100 | |
0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年11月份AQI指数频数分布如表2:
频数(天) | 3 | 6 | 12 | 6 | 3 |
<>(1)设,若与之间是线性关系,试根据表1的数据求出关于的线性回归方程;
(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
根据表3估计小李的洗车店2017年11月份每天的平均收入.
附参考公式:,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等腰直角三角形中,,点是边上异于的一点,光线从点出发,经反射后又回到原点,光线经过的重心.
(1)建立适当的坐标系,请求的重心的坐标;
(2)求点的坐标;
(3)求的周长及面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为.
(1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;
(2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com