精英家教网 > 高中数学 > 题目详情

【题目】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )

A. 9B. 12C. 18D. 24

【答案】C

【解析】

E点到F点最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,利用组合的知识,即可求解。

EF,每条东西向的街道被分成2段,每条南北向的街道被分称2段,

E点到F点最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,

故共有种走法,

同理从FG,最短的走法,有种走法,

所以小明到老年公寓可以选择的最短路径条数为种走法,故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中,错误的是( )

A. 若命题,则命题

B. ”是“”的必要不充分条件

C. “若,则中至少有一个不小于”的逆否命题是真命题

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,顶点到直线的距离为,椭圆内接四边形(点在椭圆上)的对角线相交于点,且.

(1)求椭圆的标准方程;

(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对的边为,则下列命题正确的是_____

①若,则 ②若

③若,则 ④若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若存在x0R,使fx0=x0,则称x0fx)的一个不动点,已知fx=x2+ax+4[13]恒有两个不同的不动点,则实数a的取值范围______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在定义域内单调递增,求的取值范围;

(2)若且关于的方程上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,(为参数),直线的参数方程为为参数,为实数),直线与曲线交于 两点.

(1)若,求的长度;

(2)当面积取得最大值时(为原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】展开式中前三项系数成等差数列,求:

(1)展开式中含x的一次幂的项;

(2)展开式中所有x 的有理项;

(3)展开式中系数最大的项。

查看答案和解析>>

同步练习册答案