精英家教网 > 高中数学 > 题目详情
椭圆的离心率为(   )
A.B.C.D.
B
由椭圆方程可得,,所以,则,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点动点满足,当点的纵坐标为时,点到坐标原点的距离为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设椭圆C:的左、右焦点分别为,点满足  
(Ⅰ)求椭圆C的离心率
(Ⅱ)若已知点,设直线与椭圆C相交于A,B两点,且
求椭圆C的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:为椭圆C的两焦点,P为椭圆C上一点,连接
延长交椭圆于另外一点Q,则⊿的周长_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别为椭圆的左、右两个焦点,一条直线经过点与椭圆交于两点, 且的周长为8。
(1)求实数的值;
(2)若的倾斜角为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点
使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长
交椭圆于点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在双曲线中,,且双曲线与椭圆有公共焦点,则双曲线的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

查看答案和解析>>

同步练习册答案