精英家教网 > 高中数学 > 题目详情
6.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.5

分析 由三视图可知:该几何体为一个三棱柱截去一个四棱锥F-DENM,即可得出.

解答 解:由三视图可知:该几何体为一个三棱柱截去一个四棱锥F-DENM,如图所示
该几何体的体积V=$\frac{\sqrt{3}}{4}×{2}^{2}$×3-$\frac{1}{3}×$$\frac{1+2}{2}×2$×$\sqrt{3}$
=2$\sqrt{3}$.
故选:B.

点评 本题考查了三视图的有关计算、三棱柱与三棱锥的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cos2x,$\sqrt{3}$sinx),$\overrightarrow{b}$=(1,cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+m,且当x∈[0,$\frac{π}{6}$]时,f(x)的最小值为2.
(Ⅰ)求m的值,并求f(x)图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)2]-f(x),x∈[0,$\frac{π}{6}$],求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图,则几何体的表面积为6+2$\sqrt{5}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某中学食堂每天供应3000名学生用餐,为了改善学生伙食,学校每星期一有A、B两种菜可供大家免费选择(每人都会选而且只能选一种菜).调查资料表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有40%改选A种菜.用an,bn分别表示在第n个星期一选A的人数和选B的人数,如果a1=2000.
(1)请用an、bn表示an+1与bn+1
(2)证明:数列{an-2000}是常数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,1≤x≤3}\\{x-3,x>3}\\{\;}\end{array}\right.$,若在其定义域内存在n(n≥2,n∈N*)个不同的数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值是3;若n=2,则$\frac{f({x}_{n})}{{x}_{n}}$的最大值等于4-$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等腰梯形ABCD中,AD∥BC,AD=$\frac{1}{2}$BC,∠ABC=60°,N是BC的中点,将ABCD绕AB旋转90°,得到梯形ABC′D′.
(1)求证C′N∥平面ADD′;
(2)求二面角A-C′N-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),将OA绕坐标原点O逆时针旋转$\frac{π}{2}$至OB,则点B的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$)B.($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$)C.(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$)D.($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案