精英家教网 > 高中数学 > 题目详情
9.化简:$\frac{\sqrt{1-2sin10°cos10°}}{cos(-10°)-\sqrt{1-co{s}^{2}170°}}$=(  )
A.0B.-1C.1D.±1

分析 利用平方差公式,诱导公式,同角三角函数关系式的应用化简即可得解.

解答 解:$\frac{\sqrt{1-2sin10°cos10°}}{cos(-10°)-\sqrt{1-co{s}^{2}170°}}$=$\frac{\sqrt{(cos10°-sin10°)^{2}}}{cos10°-sin10°}$=$\frac{cos10°-sin10°}{cos10°-sin10°}$=1.
故选:C.

点评 本题主要考查了平方差公式,诱导公式,同角三角函数关系式的应用在化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如果把函数y=$\frac{1}{4}$sin2x的图象按向量$\overrightarrow{v}$平移,就可以得到函数y=$\frac{1}{4}$sin(2x-$\frac{π}{3}$)的图象,那么向量$\overrightarrow{v}$的坐标是(  )
A.($\frac{π}{3}$,0)B.($\frac{π}{6}$,0)C.(-$\frac{π}{3}$,0)D.(-$\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在某城市中,M,N两地之间有整齐的方格形道路网,A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处,今甲由道路网M处出发随机地选择一条沿街的最短路径到达N处.
(Ⅰ)求甲由M处到达N处的不同走法种数;
(Ⅱ)求甲经过A2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=∫${\;}_{0}^{x}$t(t-4)dt在[-1,5]上(  )
A.有最大值,无最小值B.有最大值和最小值
C.有最小值,无最大值D.无最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=0且$\frac{1}{1-{a}_{n+1}}$-$\frac{1}{1-{a}_{n}}$=1
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=n•($\frac{1}{2}$)nan,求数列{cn}的前n项和Tn
(Ⅲ)设bn=$\frac{1-\sqrt{{a}_{n+1}}}{\sqrt{n}}$,记sn为数列{bn}的前n项和.证明sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(x,-2)$,若$\overrightarrow a$∥$\overrightarrow b$,则$\overrightarrow a+\overrightarrow b$=(  )
A.(2,1)B.(-2,-1)C.(3,-1)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义域为R的函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)的单调性,并加以证明;
(3)若对于任意实数t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“|x|≥0(x∈R)”的否定是(  )
A.“?x∈R,使|x|<0”B.“?x∈R,使|x|<0”C.“?x∉R,使|x|<0”D.“?x∈R,使|x|≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中,a2=6,2a3=a1+a4+3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{{3^{n-1}}}}{n}•{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案