如图,已知椭圆:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.(12分)
(1)求椭圆的方程;(3分)
(2)求的最小值,并求此时圆
的方程;(4分)
(3)设点是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.(5分)
(1);(2)
,
;(3)定值为4.
解析试题分析:(1)通过离心率和的值求出椭圆的方程.(2)假设M,N坐标求出
的式子.M,N又在椭圆上同时M的坐标与N的坐标是对成的.根据M的横坐标的范围求出
的范围.(3)假设P点的坐标根据M的坐标写出直线PR,并求出R的坐标。类似写出S的坐标.坐标都转化为M点的坐标表示形式.即可求出定值.本题知识量较大.涉及椭圆的标准方程的求法,最值问题,定值问题,这些问题的切入点都不好把握.要做好这类型题要有化归的思想,整理化简的能力,整体把握解题思路的能力.
试题解析:(1)依题意,得,
,∴
;
故椭圆的方程为
.
(2)方法一:点与点
关于
轴对称,设
,
, 不妨设
.
由于点在椭圆
上,所以
.
由已知,则
,
,
所以.
由于,故当
时,
取得最小值为
.
由(*)式,,故
,又点
在圆
上,代入圆的方程得到
.
故圆的方程为:
.
(3)设,则直线
的方程为:
,
令,得
,同理:
,
故
又点与点
在椭圆上,故
,
,
代入(**)式,得:.
所以为定值.
考点:1.椭圆的方程.2.最值问题.3.定值问题.4.化归思想.5.整体思维.
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且L与的两个焦点A和B满足
(其中O为原点),求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点
,且离心率
。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为D,且满足
,试判断直线
是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当的角平分线垂直
轴时,求直线
的斜率;
(Ⅲ)若直线在
轴上的截距为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知三点P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为,求以
为焦点且过
点的双曲线的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一个圆的圆心为坐标原点,半径为
.从这个圆上任意一点
向
轴作垂线
,
为垂足.
(Ⅰ)求线段中点
的轨迹方程;
(Ⅱ)已知直线与
的轨迹相交于
两点,求
的面积
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点F在轴上,离心率
,点
在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线
交椭圆
与
、
两点,且
、
、
成等差数列,点M(1,1),求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com